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Streszczenie

Termodynamika i mechanika kwantowa reprezentują dwa fundamentalne paradygmaty, które ewoluowały 
w potężne i skuteczne teorie naukowe, zdolne do opisywania ogromnej gamy zjawisk fizycznych z niezwykłą 
precyzją. Termodynamika ma swoje korzenie w XIX wieku, pochodzące z prób zrozumienia silników 
parowych podczas rewolucji przemysłowej. Natomiast mechanika kwantowa wyłoniła się z argumentów 
dotyczących natury promieniowania ciała doskonale czarnego. Przez wiele dekad te dwie teorie rozwi
jały się niezależnie. Termodynamika skupiała się na opisie makroskopowych właściwości układów, nie 
zagłębiając się w szczegóły mikroskopowe, podczas gdy mechanika kwantowa koncentrowała się na stu
diowaniu atomów i cząstek subatomowych. W miarę jak termodynamika stopniowo poszerzała swoje 
granice w celu zbadania układów mikroskopowych, mechanika kwantowa torowała drogę dla nowego 
obszaru badań skoncentrowanego na koncepcji, że układy kwantowe mogą być wykorzystywane do zadań 
obliczeniowych i informacyjnych bardziej efektywnie niż klasyczne. W pewnym momencie odkryto także, 
że termodynamika narzuca fizyczne ograniczenia na przetwarzanie informacji. Konwergencja tych dwóch 
paradygmatów nastąpiła, gdy naukowcy zaczęli badać rzeczywistość kwantową, starając się zrozumieć 
prawa termodynamiczne rządzące układami kwantowymi.

W tej pracy badam różne aspekty jednego z fundamentalnych pytań termodynamiki: jakie przemiany 
stanu mogą przechodzić układy kwantowe podczas oddziaływania z łaźnią termiczną przy określonych 
ograniczeniach? Ograniczenia te mogą dotyczyć zachowania całkowitej energii, efektów pamięciowych 
lub uwzględnienia skończonego rozmiaru układu. Korzystając z minimalnych założeń na temat wspólnej 
dynamiki układu i kąpieli, tj. że układ złożony jest zamknięty i ewoluuje unitarnie zachowując energię, 
wywodzę jawną konstrukcję zbioru wszystkich stanów, do których układ w danym stanie początkowym 
może ewoluować termodynamicznie lub z których może ewoluować. Pozwala to na scharakteryzowanie i 
zrozumienie struktury termodynamicznej strzałki czasu. Taka konstrukcja jest ogólna i opiera się jedynie 
na założeniu o zachowaniu całkowitej energii i termiczności kąpieli. W rezultacie, kolejne pytanie jaka 
dynamika może być obserwowana, gdy efekty pamięci pomiędzy układem a kąpielą są niezaniedbywalne, a 
także jak procesy termodynamiczne zależą od efektów pamięci, skłoniło mnie do opracowania formalizmu 
łączącego procesy termodynamiczne bez pamięci z dowolnie niemarkowskimi. To z kolei rzuca światło 
na sposób kwantyfikacji efektów pamięci w protokołach termodynamicznych. Wreszcie, badam także 
problem charakteryzacji optymalnych przemian termodynamicznych, gdy fluktuacje wokół wielkości 
termodynamicznych są porównywalne ze średnimi. Prowadzi mnie to do zbadania wystarczających i 
koniecznych warunków leżących u podstaw przemian termodynamicznych układów o skończonym rozmiarze. 
Jako pierwszy charakteryzuję optymalne przemiany dla ważnej klasy procesów termodynamicznych układów 
o skończonym rozmiarze przygotowanych w superpozycji różnych stanów energetycznych. Co więcej, 
dowodzę również zależność między fluktuacjami energii swobodnej stanu początkowego układu a minimalną 
ilością energii swobodnej rozpraszanej podczas procesu. Formułuję więc słynną relację fluktuacji-dyssypacji 
w języku informacji kwantowej.

Ostatnia część tej pracy skupia się na badaniu zjawiska wszechobecnego w  nauce, w szczególności w 
termodynamice, a mianowicie zjawiska katalizy. Polega ona na wykorzystaniu dodatkowego układu 
(katalizatora) do umożliwienia procesów, które w przeciwnym razie byłyby niemożliwe. Przez ostatnie 
dwie dekady ta koncepcja rozprzestrzeniła się w  dziedzinie fizyki kwantowej, efekt ten jednak zwykle 
opisywany jest w ramach wysoce abstrakcyjnego formalizmu. Pomimo swoich sukcesów, podejście to ma 
trudności z pełnym uchwyceniem zachowania fizycznie realizowalnych układów, co ogranicza praktyczną 
stosowalność katalizy kwantowej. Nasuwa się więc pytanie czy kataliza kwantowa może wyjść poza teorię 
i wejść w kontekst praktyczny? Innymi słowy, jak można przekształcić koncepcję katalizy kwantowej z 
czysto teoretycznej idei w narzędzie, które można zastosować w praktyce? Pokażę w jaki sposób można to 
osiągnąć w paradygmatycznym układzie optyki kwantowej, a mianowicie w modelu Jaynesa-Cummingsa, w 
którym atom oddziałuje z wnęką optyczną. Atom odgrywa tu rolę katalizatora i pozwala na deterministyczne 
generowanie nieklasycznych stanów światła we wnęce, co potwierdzone jest statystyką sub-Poissonowską 
lub negatywnością Wignera.



Abstract

Thermodynamics and quantum mechanics represent two fundamental paradigms that have evolved into 
powerful and successful scientific theories, capable of describing a vast array of physical phenomena 
with remarkable precision. Thermodynamics has its roots in the 19th century, originating from efforts to 
understand steam engines during the Industrial Revolution. Quantum mechanics, on the other hand, emerged 
from consistency arguments concerning the nature of black-body radiation. For many decades, these two 
theories developed independently. Thermodynamics concentrated on describing the macroscopic properties 
of systems without delving into microscopic details, while quantum mechanics focused on the study of 
atoms and subatomic particles. As thermodynamics gradually pushed its boundaries to explore microscopic 
systems, quantum mechanics paved the way for a new research field centred on the notion that quantum 
systems could be harnessed for computational and informational tasks. In due course, it was discovered 
that thermodynamics imposed physical constraints on information processing. The convergence of these 
two paradigms occurred when scientists began probing the quantum realm, seeking to understand the 
thermodynamic laws governing quantum systems.

In this thesis, I investigate various aspects of one of the most fundamental questions in thermodynamics: what 
state transformations can quantum systems undergo while interacting with a thermal bath under specific constraints? 
These constraints may involve total energy conservation, memory effects, or finite-size considerations. Using 
minimal assumptions on the joint system-bath dynamics, namely that the composite system is closed and 
evolves unitarily via an energy-preserving unitary, I will derive an explicit construction of the set of states to 
which a given state can thermodynamically evolve to or evolve from. This allows one to characterise and 
understand the structure of the thermodynamic arrow of time. Such a construction is general and relies 
only on the assumption of total energy conservation and the thermality of the bath. As a result, a follow-up 
question what dynamics are observed when memory effects between the system and bath are non-negligible, as well as 
how thermodynamic processes are affected by memory effects, will lead to development of a framework bridging 
the gap between memoryless and arbitrarily non-Markovian thermodynamic processes. This, in turn, sheds
light on how to quantify the role played by memory effects in thermodynamic protocols. Next, to understand
how optimal thermodynamic processing is affected when one goes beyond the thermodynamic limit -  where 
fluctuations around thermodynamic quantities are comparable to averages -  I ask what are the necessary
and sufficient conditions for the existence of thermodynamic transformations between different non-equilibrium states
of few-particle systems. The answer to such a question will lead to the necessary and sufficient conditions 
underlying thermodynamic transformations of finite-size systems and the characterisation of thermodynamic 
processes from finite-size systems that may be in superposition of different energy states. What is more, 
I will also prove a relation between the free energy fluctuations of the initial state of the system and the
minimal amount of free energy dissipated during the process. This allows for the formulation of the famous 
fluctuation-dissipation relations within a quantum information framework.

Finally, the last part of this thesis focuses on studying a ubiquitous phenomenon in science and, in particular, 
in thermodynamics, the so-called catalysis. It consists of using an auxiliary system (a catalyst) to enable
processes that would otherwise be impossible. Over the last two decades, this notion has spread to the field 
of quantum physics. However, this effect is typically described within a highly abstract framework. Despite 
its successes, this approach struggles to fully capture the behavior of physically realisable systems, thereby
limiting the applicability of quantum catalysis in practical scenarios. This gives rise to the question: what
if quantum catalysis could go beyond theory and step into practical context? In other words, how can one translate 
the concept of quantum catalysis from being a purely theoretical notion to a tool that can be practically implemented.
Strikingly, I will show this effect in a paradigmatic quantum optics setup, namely the Jaynes-Cummings
model, where an atom interacts with an optical cavity. The atom plays the role of the catalyst, and allows for 
the deterministic generation of non-classical light in the cavity as witnessed by sub-Poissonian statistics or 
Wigner negativity.
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W hat is this thesis about?





Modern thermodynamics in  a 
nutshell

From classical to quantum thermodynamics

haviour of complex systems. It offers clear and simple guidelines for 
characterising macroscopic systems in equilibrium, allowing us to predict 
and control state transformations using a small number of macroscopic 
variables [1, 2]. Unlike other theories in physics, which begin with a 
microscopic approach and proceed to a macroscopic description, ther
modynamics is unconcerned with microscopic details and instead takes 
only bulk properties into account1. Over three centuries, the theory has 
withstood major scientific revolutions, such as the advent of general 
relativity and quantum mechanics, establishing itself as one of the pillars 
of physics. Its importance was unequivocally stated by Einstein, who 
declared [3]:

“The only physical theory of universal content, which I am con
vinced, that within the framework of applicability of its basic 
concepts will never be overthrown.”

Its successes and universality are rooted in four laws, which axiomatically 
encapsulate empirical observations of nature:

0. Zeroth law. If two systems are each in thermal equilibrium with a third 
system, they are also in thermal equilibrium with one another.

1. First law. The energy exchanged between a system and its environment
in a physical process can be split into two contributions, namely work W  

and heat Q : d U  = δ Q  +  δ W * .

2. Second law. The entropy of a closed system undergoing a spontaneous
physical process either increases or remains the same: AS ≥  0.

3. Third law. As the temperature approaches absolute zero, the change in
entropy also tends toward zero: lim ^ → o AS  = 0.

There are many ways to state and rephrase the aforementioned laws, 
particularly the second law of thermodynamics, as reflected in the 
formulations by Kelvin2 , Clausius3, and Carnot4. The key takeaway 
is that thermodynamics imposes fundamental constraints on possible 
physical processes. These constraints are expressed as a set of relations 
among macroscopic quantities, which are defined in what is known 
as thermodynamic limit. This idealised scenario involves a macroscopic
system composed of n  →  ∞  particles undergoing changes in such a
way that the system remains approximately in thermal equilibrium at all 
times.

1: This is a historical strategy as the the
ory was conceived at the end of the eigh
teenth century when the Industrial Rev
olution began to use heat to generate 
movement. At the time, no physical the
ory existed that could adequately explain 
the nature of heat at the microscopic 
level.

2: “A transformation whose only final result 
is to transform into work heat extracted from 
a  source which is at the same temperature 
throughout is impossible.”  [1]

3: “A transformation whose only final result 
is to transfer heat from a  body at a  given 
temperature to a body at a higher temperature 
is impossible”  [1]

4: “No engine operating between two heat 
reservoirs can be more efficient than a Carnot 
engine operating between those same reser
voirs.”  [4]

* The notation δ  is used to indicate that W  and O  are inexact differentials, i.e., path-
dependent.



4 1 Modern thermodynamics in a nutshell

Figure 1.1: Maxwell's Gedanken experiment. 
An intelligent being, a demon, controls 
a door between two gas chambers. As 
gas m olecules approach the door, the 
demon selectively opens and closes it, 
allowing only fast-moving molecules to 
pass through in one direction and slow- 
moving molecules to pass through in 
the other direction. Since the kinetic tem
perature of a gas is directly linked to the 
velocities of its constituent molecules, the 
demon's strategy results in one chamber 
warming up while the other chamber 
cools down. This reduces the overall en
tropy of the system without requiring 
any work, thereby violating the second 
law of thermodynamics.

In the late 19th century, as the atomic theory gained popularity, scien
tists began conceptualising a gas as a vast collection of bouncing balls 
confined within a chamber of finite volume. This sparked the interest of 
Boltzmann, who ended up establishing a connection between entropy—a 
quantity previously defined phenomenologically—and the volume of a 
specific region in phase space, an entity defined in classical mechanics [5]. 
From this point onwards, statistical mechanics emerged as a complemen
tary framework to thermodynamics, aiming to bridge the gap between 
macroscopic and microscopic descriptions. By combining techniques 
from statistics and mechanics, it provided a new route for explaining the 
physical properties of matter in bulk through the lens of the dynamical 
behaviour of its microscopic constituents [6]. Importantly, it elucidated 
the notion of equilibrium and showed that thermodynamic variables 
can be interpreted as averages of microscopic quantities. For instance, 
thermal energy may be associated with the statistical mean of the kinetic 
energy of system's particles. Consequently, the laws of thermodynamics 
possess a probabilistic nature: they are expected to hold on average, 
but there is nothing to preclude their temporary violation when we go 
beyond the thermodynamic limit. As thermodynamics typically involves 
exceptionally large systems, the law of large numbers tells us that the 
likelihood of observing significant deviations from the average value 
essentially becomes negligible.

The probabilistic nature of the laws of thermodynamics originates from 
the interplay between information and thermodynamics. The famous 
gedanken experiment, known as Maxwell's demon [7, 8], suggests that, 
given information about the positions and momenta of particles, one 
could reduce the entropy of a gas of particles without expending any 
work, seemingly violating the second law of thermodynamics (see Fig. 1.1 
for an extended discussion). Essentially, having information allows one
to violate the second law. However, the recognition of the thermody
namic significance of information is perhaps best captured by Szilard's
engine [9], a simple setup that exploits one bit of information (the out
come of an unbiased yes/no measurement) to implement a cyclic process
that extracts l ∣β  log 2 of energy as work from a thermal reservoir at 
inverse temperature β  (see Fig. 1.2 for a pictorial representation). As 
with Maxwell's demon, the Szilard engine can overcome the second
law of thermodynamics whenever some information about the state of
the system is available. The proposal put forth by Szilard has under
gone thorough analysis for decades, revealing possible limitations of the 
scheme and shedding light on the origin of the entropy decrease. While
Szilard did acknowledge the need for an entropy increase during the
measurement process to compensate for the entropy reduction, he did 
not explicitly address the significance of the demon's memory. Efforts to
resolve this conundrum have been many and varied [7, 8]. The puzzle
was finally solved by Charles Bennett [10], who elucidated the necessity of 
resetting (or erasing) the demon's memory to complete the cycle. Through 
the resolution of this puzzle, it became apparent that thermodynamics
imposes physical constraints on information processing. In particular,
the second law can be reformulated as a statement that no thermodynamic 
process can result solely in the erasure of information. Every time information 
is erased, the erasure process is accompanied by a fundamental heat cost,
i.e., an entropy increase in the environment. Alternatively, Landauer's
Principle [11] states that the erasure process has an unavoidable energetic
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cost, with the minimum possible amount of energy required to erase a
completely unknown bit of information given by l ∣ β  log 2.

The advancements in statistical mechanics, along with the integration of 
thermodynamics and information theory, have led scientists to go beyond 
the standard thermodynamics scenario. Whilst classical thermodynamics 
primarily focuses on thermodynamic equilibrium, recent developments 
have paved the way to investigate non-equilibrium states, revealing
thermodynamic properties in such scenarios.

For small deviations from equilibrium, linear response theory [12] pro
vides insight into how thermodynamic quantities relate to fluctuations 
defined at equilibrium. Fluctuation-dissipation theorems are crucial ex
amples as they enable us to understand the thermodynamic response of 
systems under the effect of perturbations [13, 14]. For example, when clas
sical systems evolve under a Hamiltonian and are coupled to a thermal 
bath, the free energy difference satisfies the following relation, provided
the switching is sufficiently slow [15]: Δ F  = (W } -  β σ w ∣ 2, where β  is the 
inverse temperature, (W } is the average work and = (W 2} -  (W }2 is
the work variance. This simple relation tells us that the cost of driving 
a system out of equilibrium is accounted for by some work dissipation, 
which is related to thermal fluctuations characterised at equilibrium. 
Emerging approaches like stochastic thermodynamics [16, 17] pick up 
where the standard methods start to fail and provide a framework for 
extending classical thermodynamics to finite-size and non-equilibrium 
systems. Its range of applicability spans from single colloidal particles
trapped by time-dependent laser fields [18- 20] to enzymes [21- 23] and 
thermoelectric devices involving single electron transport [24- 27]. This 
field has played a crucial role in uncovering fluctuation relations [28], which
establish bounds for processes occurring when systems are driven away 
from equilibrium. A celebrated example is the Jarzynski equality [29]5, a
remarkable relation that allows one to express the free energy difference
between two equilibrium states by a non-linear average over the work
required to drive the system in a non-equilibrium process from one state
to the other. By comparing probability distributions for the work spent 
in the forward and backward (time-reversed) processes, Crooks found a 
"refinement" of the Jarzynski relation, now called the Crooks fluctuation 
theorem [30]6. Other results linking fluctuations and thermodynamic
quantities have been derived in the past years [31], allowing one to discuss 
thermodynamics beyond its limits.

When dealing with even smaller systems, quantum effects come into play,
and fluctuations are no longer solely of thermal origin but also quantum 
in nature. New effects, such as entanglement and coherence, naturally 
raise the question of how classical formulations of thermodynamics 
are affected at the level of a few quanta. Addressing these questions 
entails a preliminary inquiry into how concepts like heat, work, and 
temperature can be extended to the quantum realm. Apart from the drive 
to clarify fundamental aspects, the onset of a new quantum revolution 
involving the miniaturisation of devices to the nanoscale has also sparked 
questions about implementing quantum effects to devise optimal ther
modynamic protocols and explore the possibilities for achieving real 
quantum advantages. As a result, the emerging field known as quantum 
thermodynamics [32- 39], seeks to extend standard thermodynamics to

Figure 1.2: Szilard engine. A chamber con
taining a single atom is initially in an 
unknown position. A  demon measures
theatom 'spositionandinsertsam ovable 
wall with an attached mass. As the gas in 
the chamber expands, the attached mass 
is raised, resulting in the performance of 
work. This mechanism appears to enable
the conversion of information into use
ful energy, seemingly contradicting the 
second law of thermodynamics.

5: The Jarzynski equality establishes a 
connection between the free energy dif
ferences of two states and the irreversible
work performed along an ensemble of 
trajectories that link those states:

{e ~Pw ) = e ~Pδ f .

6: The Crooks relation offers a  refined
fluctuation theorem in comparison to the
Jarzynski equality, given by the equation:

(w) = f , - β ( Δ F - w )  (1 1)
Pb (w ) , ( . )

Here, Pp (w) and Pp (w) represent the
forward and backward probability den
sities of dissipating a specific amount of
work w.
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systems of sizes well below the thermodynamic limit, in non-equilibrium 
situations, and with the full inclusion of quantum effects.

Whilst the field has flourished over the last two decades, its roots stretch 
back to the middle of the last century, when physicists realised that 
qubits could achieve temperatures below absolute zero [40], and that 
three-level masers could be regarded as heat engines [41, 42]. Shortly 
thereafter, in the 70s, mathematical approaches leaning on the theory of 
open quantum systems formalised the study of such systems as models 
of heat engines [43, 44]. Finally, the field has consolidated in recent years, 
as our increasing ability to manipulate and control systems at smaller
scales has enabled experimental physicists to miniaturise heat engines,
pumps, and refrigerators into the quantum realm [45- 51].

Due to the broad nature of the field, there have been several different 
approaches in recent years that have either been unified or combined 
into a single approach. In the context of capturing thermodynamics at 
the level of a few quanta, two prominent candidates emerge. The first 
candidate is based on the theory of open quantum systems [52, 53], 
which describes the continuous evolution of a quantum system over time 
using a type of differential equation known as a master equation. This 
approach is typically model-dependent and describes the thermalisation
of a system that is weakly coupled to a large environment.

The second approach, known as the resource theory of thermodynamics [54
58], is general, model-independent, and aims to characterise the possible 
physical evolution of systems under certain constraints, such as energy 
conservation, locality, etc. Unlike the first approach, it does not rely 
on a master equation description. Aiming to capture thermodynamic 
properties out of certain constraints, it does not focus on a specific model
or explicitly solve for a particular dynamics.

Although at first glance, both frameworks may seem like completely 
distinct approaches, they can be mapped to each other and are simply 
different sides of the same coin [59]. Where both approaches differ lies in
the toolkits used and the questions asked.

What am I gonna find here?

This thesis focuses on the resource-theoretic approach [60]. Its objectives
include characterising thermodynamic transformations across different
regimes and identifying optimal methods for exploiting them, while 
taking into account realistic constraints. These constraints arise from 
fundamental principles, such as the second law of thermodynamics, 
as well as more practical considerations like limited access to memory. 
The same approach also enables us to revisit longstanding questions, 
such as that of the thermodynamic arrow of time, which imposes a 
fundamental asymmetry in the flow of events. Finally, the last chapter of 
this thesis is dedicated to a novel connection between quantum optics 
and resource theories, opening up new directions from both theoretical
and experimental perspectives.
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2.1 Geometric structure of thermal cones

State of the art and motivation

The second law of thermodynamics imposes a fundamental asymmetry in 
the flow of events. The so-called thermodynamic arrow of time introduces 
an ordering that divides the system's state space into past, future and 
incomparable regions. This thermodynamic ordering can be explored by 
focusing on the most general type of energy-conserving interaction 
between the system and a thermal bath. These transformations encode 
the structure of the thermodynamic arrow of time by telling us which 
states can be reached from a given state. While substantial insights have 
been gained from studying the future, explicit characterisation of both 
the incomparable region and the past has not been addressed.

Main results

I1 have made a significant step towards geometrically understanding the 
thermodynamic arrow of time by investigating the concept of thermal cones, 
i.e., sets of states that a given state can thermodynamically evolve to (the 
future thermal cone) or evolve from (the past thermal cone). I provided
an explicit construction of the past thermal cone and the incomparable
region for a given d-dimensional energy-incoherent state, and delved 
into a detailed analysis of their volumes. Together with previously 
known results on the future thermal cone, this construction offers a
comprehensive view of the thermodynamically allowed evolution.

In deriving my results, I introduced a novel tool—an embedding lattice
for thermomajorisation—which might be of independent interest to
scientists working on information-theoretic approaches to thermodynam
ics. Lastly, I showed how these findings can be used to study possible
state transformations in theories of entanglement and coherence via the 
common majorisation framework.

1: In the first chapter, although the ef
forts described are a product of both my 
work and that of my collaborators, I have 
chosen to use the pronoun 'I ' for simplic
ity and to emphasise the presentation of 
the results. From Chapter 3  onwards, the 
pronoun 'w e' is employed in line with 
conventional academic writing and to 
reflect collective contributions.

2.2 Thermal recall: Memory-assisted Markovian  
thermal processes

State of the art and motivation

One of the major endeavours currently undertaken by the quantum 
community is the challenge of extending thermodynamics to the level 
of just a few particles, while still incorporating all relevant properties 
into a single framework. To this end, two primary approaches have 
emerged. The first approach is based on Markovian master equations, 
while the second focuses on thermal operations. Despite the success 
of both frameworks, each comes with its own specific limitations. The



8 2 Motivation and contributions

former models memoryless dynamics, whereas the latter describes arbi
trarily non-Markovian processes. However, neither approach allows for 
easy incorporation of finite-memory effects, which necessitates further 
attention. Although previous research in non-Markovian dynamics has 
developed model-dependent approaches, there is a need for a general, 
model-independent and comprehensive framework.

Main results

I bridged the gap between thermal operations and Markovian thermal
processes by introducing the concept of memory-assisted Markovian
thermal processes (MeMTP) -  memoryless thermodynamic processes
that are promoted to non-Markovianity by allowing partial control over 
the bath's degrees of freedom. My main contribution was to put forward 
a family of algorithms that enabled interpolation between the regime of 
memoryless dynamics and that with full control over both the system and 
the bath. Furthermore, I proved that, in the infinite temperature limit, all 
thermodynamic transformations induced by arbitrarily non-Markovian 
dynamics are recovered using MeMTP when memory is large enough. 
For the finite temperature regime, I have demonstrated the convergence 
to a subset of transitions and, based on strong numerical evidence, posed 
a conjecture that the convergence extends to arbitrary transitions.

These results opened the door to studying the role memory plays in
the performance of thermodynamic protocols. First, I investigated work 
extraction in the intermediate regime of limited memory, comparing it 
with the two traditional scenarios of no memory and complete control. 
Secondly, I addressed the problem of cooling a two-level system using 
a two-dimensional memory characterised by a non-trivial Hamiltonian. 
This minimal model demonstrated that, when memory is brought into the 
picture, one can further cool a system below the ambient temperature.

2.3 Fluctuation-dissipation relations for 
thermodynamic distillation processes

State of the art and motivation

The development of novel quantum technologies is closely linked to 
our level of understanding of the laws of thermodynamics at the scale 
of a few quanta. In this regime, thermal and quantum fluctuations
around thermodynamic quantities become significant, and dissipation
becomes unavoidable. This implies that the system's free energy is 
inevitably lost during a thermodynamic process that transforms the 
system's state, which limits its potential as a quantum resource. From
both fundamental and applied perspectives, it is crucial to comprehend 
the ultimate limits of such dissipation. This brings the need to develop
a theoretical framework that accommodates quantum effects such as
superpositions, while simultaneously handling finite-size systems where 
fluctuations around thermodynamic averages are dominant. This regime
inherently poses a fundamental question: what are the necessary and
sufficient conditions underlying thermodynamic transformations of finite-size 
systems? Variants of this question, such as single-shot and asymptotic
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state interconversion, have been addressed, but the interplay between 
fluctuations and dissipation has remained unresolved.

Main results

I developed a genuinely quantum framework allowing one to push the 
thermodynamic description beyond macroscopic systems. Specifically, 
I was able to find necessary and sufficient conditions for the existence 
of a thermodynamic transformation between different non-equilibrium 
states of a few-particle systems. This allowed me to establish a precise 
relationship between the free energy fluctuations of the system's initial 
out-of-equilibrium state and the minimal free energy dissipated during 
a thermodynamic process. As a result, I was able to recast the well- 
established fluctuation-dissipation relations within the the context of 
quantum information. This, in turn, enabled me to pinpoint the optimal 
performance of thermodynamic protocols, including work extraction, 
information erasure, and thermodynamically-free communication, up 
to second-order asymptotics based on the number of processed systems. 
These findings represent a pioneering analysis of such thermodynamic
protocols for quantum states exhibiting coherence between distinct energy
eigenstates, especially in the intermediate regime of large yet finite N .

2.4 Catalysis in cavity QED

State of the art and motivation

Catalysis is a ubiquitous phenomenon in science. It consists of using an 
auxiliary system (a catalyst) to enable processes that would otherwise be 
impossible. Over the last two decades, this notion has spread to the field 
of quantum physics. It has become instrumental in revealing fundamental 
constraints on both entanglement manipulation and thermodynamic 
processes. Additionally, it has found many applications within quantum 
information theory. However, this effect is typically described within a 
highly abstract framework known as resource theories. Despite its successes, 
this approach struggles to fully capture the behaviour of physically 
realisable systems, thereby limiting the applicability of quantum catalysis 
in practical scenarios. This poses a challenge for translating the concept 
of quantum catalysis from a purely theoretical construct to a practically 
implementable tool.

Main results

I delved into the practical aspects of quantum catalysis to determine its 
relevance and potential applications, especially in experimental settings. 
During my investigation, I uncovered the effect of quantum cataly
sis within a paradigmatic quantum optics setup -  namely, the Jaynes-
Cummings model in which an atom interacts with an optical cavity.
By using the atom as a catalyst, I demonstrated that this effect can the
generate non-classical states of light in the cavity. This insight prompted
me to translate the known framework of catalytic transformations to
the realm of quantum optics, thereby proving its usefulness in practical



10 2 Motivation and contributions

scenarios. In doing so, I identified which atomic states can act as catalysts 
and assessed the degree of non-classicality these states could induce 
in the cavity. Futheremore, I also elucidated the role of quantum corre
lations and quantum coherence in the creation of non-classical states 
of light during a catalytic process. These findings significantly broaden 
the horizons of quantum catalysis, pushing it beyond the theoretical 
boundaries of quantum resource theories and marking a crucial step 
forward in its practical applications within quantum science.

2.5 Outline of the thesis

This thesis is structured as follows. Chapter 3 begins with mathematical 
preliminaries, setting out the notation and introducing essential concepts 
required for subsequent chapters. These discussions include an exami
nation of probability distributions and their transformations, as well as 
various types of majorisation such as thermomajorisation, continuous 
thermomajorisation, and approximate thermomajorisation.

Next, Chapter 4 provides an introduction to the resource theory of ther
modynamics, predominantly encompassing previously known results. 
Following the formal introduction of the set of free operations, termed 
thermal operations, and a discussion of their characteristics, this frame
work is applied to the analysis of thermodynamic protocols. I then briefly 
introduce a paradigmatic approach to quantum thermodynamics based 
on Markovian master equations, which will be used and contrasted with 
the resource-theoretic approach in subsequent sections of this thesis.

Chapter 5 is devoted to the study of the geometric structure of thermal 
cones. This chapter builds on the following original result [61]. The 
discussion starts with the main results concerning the construction 
of majorisation cones and their interpretation in the thermodynamic 
context, as well as in other majorisation-based theories. Subsequently, 
I investigate the structure of thermal cones, which emerge from the 
thermomajorisation relation, using a novel tool known as the embedding 
lattice. An explicit characterisation of the incomparable and past thermal 
regions is then presented, followed by an in-depth analysis of their 
properties. New thermodynamic monotones, defined by the volumes of 
the past and future thermal cones, are introduced. I further delve into 
their operational interpretation and detail their properties. Finally, the 
chapter ends by extending the notion of thermal cones beyond diagonal 
states to the simplest case of a coherent qubit.

Chapter 6 is dedicated to the study of memory-assisted Markovian 
thermal processes. This chapter is based on the following original re
sult [62]. The chapter starts by highlighting the distinctions between the 
frameworks of thermal operations and Markovian thermal processes. Sub
sequently, the central concept of this chapter, namely, memory-assisted 
Markovian thermal processes is introduced. A protocol is then out
lined that uses thermal memory states to approximate non-Markovian 
thermodynamic state transitions with Markovian thermal processes. 
Furthermore, it is demonstrated how this approximation converges to 
the complete set of transitions achievable via thermal operations as the 
memory size increases. Lastly, I explain how this framework can be
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used to quantify the role played by memory effects in thermodynamic 
protocols such as work extraction and cooling.

Chapter 7 contains my original findings on fluctuation-dissipation rela
tions presented through the language of information theory. This chapter 
is based on the following original result [63]. The chapter begins with 
a high-level description that provides a glimpse into my investigations 
and conveys the underlying physical intuition to a broad audience, with
out delving into the technical details of the developed framework. I 
then present the key results concerning optimal transformation error 
and the fluctuation-dissipation relation for incoherent and general pure 
states. Then, I discuss their thermodynamic interpretation and apply 
my findings to three specific thermodynamic protocols: work extraction, 
information erasure, and thermodynamically-free communication.

Chapter 8 is dedicated to the study of quantum catalysis in the paradig
matic quantum optics model of Jaynes-Cummings. This chapter is based 
on the following preprint [64], which is new and still unpublished* . I 
start by discussing the general aspects of catalytic transformations and 
bridging the gap with quantum optics. This is done by uncovering a 
catalytic process that enables the generation of non-classical states of light 
within the Jaynes-Cummings model. Next, I investigate the mechanism 
of this catalytic process and identify two crucial ingredients: correlations 
and quantum coherence. I then treat the problem analytically by explicitly 
solving this model. This allows me to identify which states serve as 
catalysts and explore the degree of non-classicality induced by these 
atomic states. Finally, I conclude the chapter by discussing the generality 
of catalysis and potential future research directions.

2.6 A few more details

From Chapter 3 onwards, defintions and notable results are presented in 
titled boxes with the following color code:

Definition 2.6.1. A precise and organised meaning to a new term.

Proposition 2.6.1. A statement that is derived from what has been discussed.

Lemma 2.6.2. A minor, proven proposition that is used as a stepping stone 
to a larger result.

Theorem 2.6.3. Larger result.

Corollary 2.6.4. A proposition that follows from the larger result.

Observation 2.6.5. A statement or a remark that is made based on informal 
analysis.

* The manuscript is under peer review at Physical Review Letters .
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Not all proofs in the text are immediately presented after lemmas, 
theorems, or corollaries. Only short proofs that directly follow from 
those results are provided. This choice is intended to assist readers who 
are not interested in delving into detailed derivations and would prefer 
to skip them entirely. Each chapter always ends with a section entitled
“Derivation of the Results," in which auxiliary tools and results are derived 
and discussed in detail.

The thesis includes several comments (or solved problems) framed like 
this

Title of the comment or problem

Description of the comment or problem.

Typically, comments and problems are interspersed throughout the text 
rather than being crucial for the understanding of the thesis. These 
comments and problems can be skipped without hindering the overall 
reading. However, they do serve to complement the description of the 
topics being discussed and provide additional insights. Some relevant 
comments, extensions of arguments, or even curious observations are 
displayed as margin notes.
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The geometry of quantum states 3
3.1 Very general and brief remarks about 

quantum mechanics

Any quantum system can be described by a complex Hilbert space, 
denoted as H . This is a vector space over the complex field that is
equipped with an inner product. A specific vector in H  can be represented
using the convenient Dirac notation as ∣ψ }, which is read as ket psi. The 
inner product of two vectors, ∣ψ} and , is expressed as (ψ ∣φ }. Through 
the use of the inner product, we can define a linear functional, denoted as (φ∣ and read as bra phi, for each vector ∣φ^ .A sa  result, the inner product
forms what is referred to as a bracket in this context. This vector space 
can either be finite or infinite. In this thesis, except in Chapter 8, we will 
focus solely on finite Hilbert spaces.

The mathematical object used to describe the state of a physical system at
a given instant in time is called a state. In quantum mechanics, this state
is represented by a density operator, denoted as p , that acts on the Hilbert
space H  associated with the physical system it describes. Formally, a
density operator p  is defined by the following conditions:

(C1) Positive Semi-definite. For all ∣ψ} in H it follows that (ψ ∣p ∣ψ } ≥  0, 
or simply p  ≥  0 .

(C2) Normalisation. The trace of the density operator is equal to one,
i.e., tr(p) = 1.

(C3) Hermiticity. The density operator is Hermitian p  = p + .

These conditions guarantee that the density operator provides a valid 
quantum mechanical description of a system's state, encapsulating both 
pure states and statistical mixtures of states. The condition of positive 
semi-definiteness ensures that the probabilities of outcomes obtained 
from measurements are real and non-negative. The normalisation con
dition confirms that the total probability of all possible states of the 
quantum system sums to one, reflecting the statistical nature of quan
tum mechanics. Lastly, the requirement of Hermiticity ensures that all
eigenvalues of the density operator are real numbers, a necessary prereq
uisite for them to represent valid probabilities. As a result, every density 
operator can be written as the convex combination of unidimensional
projectors:

P = ∑  Pk  ∣ψ k X ψ ⅛ ∣ with ∑  p k = 1 and ∀ fc : p k ≥  0 . (3.1)
k k

This decomposition is generally not unique.

We will be interested in the Hilbert space of a composiste quantum
system comprising a sytem with Hilbert space Ha and a system with 
Hilbert space H⅛ , such that the joint Hilbert space is given by the tensorial 
product Hab = Ha ® Hb . For a given quantum state Pab of the composite 
system, the reduced state of subsystem A  can be obtained by taking the 
partial trace over the degrees of freedom of subsystem β . This operation 
is denoted as p^  = trβ (p A B), where ⅛  represents the partial trace over

This section is intended to provide a 
concise introduction to the fundamen
tal concepts of quantum theory dis
cussed throughout this thesis. It is not 
m eant to be a  comprehensive overview 
of quantum mechanics; for that purpose, 
the recommended books of Peres [65], 
Cohen-Tannoudji [66], and Nielsen and 
Chuang [67] are highly suggested.
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1: The reduced state on H χ , obtained as 
the partial trace over H ⅛ , is defined as

Pa := ∑ (1 a  0  ( j ∖b ) p a b (1 a  0 \ j)B),
where 1 denotes the identity and \ j ) B is 
an orthonormal basis of H b .

subsystem β 1. In this thesis, subsystem B  will represent the environment, 
or heat bath, with which the main system, subsystem A , interacts. The 
state of the environment is typically represented by a thermal Gibbs state, 
which is a statistical ensemble at equilibrium.

The state of an isolated quantum system (time-independent case) follows 
the Lioville-von Neumann equation

(3.2)

where [.,.] denotes the commutator, [A ,  β ] = A B  -  B A , and H  is the 
Hamiltonian of the system. Throughout this thesis, we will set ħ = 1. 

Isolated, or closed, quantum systems satisfies two important properties:

2: If the Hamiltonian is time-dependent, 
the evolution of p (t) is still described by 
a unitary operator U (t), but its compu
tation is more cumbersome as it follows 
the so-called Dyson series, i.e.,

where the subscript +  denotes time or
dering.

(P1) Unitary evolution. The dynamics of a closed system undergoes 
a unitary time evolution given by the operator U (t ) = ex p ( - i H t ) . 
Consequently, if p (0) denotes the initial state of the system, the 
evolved state at time τ  is given by p (τ ) = U (τ )p (0)U l̂̂ (τ).2

(P2) Purity. The eigenvalues p ⅛ of p (t ) do not change in time, i.e.,

P(C = ∑  Pk \f k (f))(ψ k (f )\ , (3.3)
k

where the pjc's are the time-independent probabilities associated 
with the eigenstates ∖ψ⅛ (t )} of the HamiltonianH . These eigenstates 
form an orthonormal basis, i.e., ( f i (f )∣ψy(t ))  = δμ , where δμ  is 
the Kronecker delta. The purity of p (t ), defined as μ  := tr [p(t )2], 
is conserved in time. If the state is pure, then μ  = 1.

A general evolution of an open quantum system is described by a quantum 
channel, which is defined as a completely positive, trace-preserving map 
(CPTP) acting on the quantum state p . Typical microscopic derivations 
lead to a master equation of the following general form [68, 69]

= -  I [H , p (t ) ] +  L [p (t )] . (3.4)

The first term on the right-hand side represents the Hamiltonian evolution 
of the system, governing the closed (reversible) quantum dynamics. The 
second term, known as the Lindbladian or dissipator, governs the open 
(irreversible) quantum dynamics. This captures the effects of decoherence 
and dissipation due to the system's interaction with its environment. The 
specific form of the Lindbladian depends on the type of interaction, and 
can generally be written as [52]:

(3.5)

where { ∙ , ∙} denotes the anticommutator, L i (t ) represents time-dependent 
jump operators, and ∏ (t ) ≥  0 are time-dependent, non-negative rates 
associated with the different jump processes. These jump rates ∏ (t ) and 
operators L i (t ) embody the specifics of the system's interaction with its 
environment.
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3.2 Dynamics of quasi-classical states

Consider a finite system whose state is described by a d-dimensional 
vector p = (p 1 , . . . ,  p d) with ∑ p j∙ = 1 and p j∙ ≥  0 for all i  ∈ { 1, . . .  , d } . 
These states are referred to as quasi-classical and they belong to the proba
bility simplex, denoted by A⅛, which represents the space of normalised 
vectors of dimension d  with real entries [see Fig. 3.1]:

(a)

Space of states

(3.6)

Probability vectors will be denoted by bold lowercase letters p ∈ Ad and 
their corresponding cumulative counterparts by bold uppercase vectors 
p  : P j  = ∑ il= 1 p ≈ for j  ∈ { 1 .............d } .

A stochastic matrix Λ represents the most general evolution between 
elements of Ad . These matrices are linear maps that transform probability 
vectors into new probability vectors. Thus, its components satisfy the 
following constraints:

(b)

Λ ij ≥  0 and Λ ,∙y = 1. (3.7)
i

These conditions ensure that each entry of Λ is non-negative and that its 
rows sum to unity, which corresponds to the conservation of probability. 
The matrix Λ describes the dynamics of a system, in a state p , by the 
matrix-vector product:

d
q = Λp  or, equivalently, <T = ∑ ⅝ P 7 .  (3∙8)

7=1

A stochastic matrix that connects two states p  and q is referred to as a 
process. If Λ can be generated by a continuous Markov process, it is said 
to be embeddable [70] and the process is memoryless. More precisely, we 
introduce a rate matrix or generator L  as a matrix with finite entries that 
satisfies

L ij ≥  0 and ∑  L ij = 0 . (3.9)
i

Then, a continuous one-parameter family L (t ) of rate matrices generates 
a family of stochastic processes Λ (t ) satisfying

⅜  Λ (t ) = L (t )Λ (t ) with Λ (0) = 1 . (3.10)
dt

The purpose of the control L (t ) is to achieve a target stochastic process Λ 
at a given final time t f , i.e., Λ = Λ (t f )3. If it is feasible to achieve such a 
target process for some choice of L (t ), then Λ is said to be embeddable* .

A stochastic matrix Λ that additionally satisfies the condition ∑ j  Λ q = 1 
is called bistochastic matrix. The term “bistochastic" refers to the fact 
that both rows and columns of the matrix sum to unity. Due to its

Figure 3.1: Space o f  states. The state space 
of a quasi-classical system is represented 
by a simplex. A two-level system (a) cor
responds to a 1-dimensional simplex, a 
line segment; a three-level system (b) 
corresponds to a 2-dimensional sim
plex, a triangle and its interior and a 
four-level system (c) corresponds to a 
3-dimensional simplex, a tetrahedron.

3: Equation 3.10 is also known as a master 
equation.

* Determining which stochastic matrices Λ are embeddable remains a challenging open 
problem that has been extensively studied for decades. The complete characterisation is 
currently limited to 2 ×  2 [71], 3 ×  3 [72- 74] and 4 ×  4 [75] stochastic matrices, although 
various necessary conditions are known [76, 77].
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significance in subsequent discussions, this matrix will be denoted by 
Λ0 . This set of matrices is completely characterised via the following 
theorem [78]:

Figure 3.2: Birkhoff polytope. The set B 3 is 
a convex hull whose extreme points are
permutation matrices (denoted by ∏∕y ).

Theorem 3.2.1 (Birkhoff theorem). The set of bistochastic matrices is a 
convex set whose extreme points are permutation matrices.

Figure 3.3: Properties of Δ 3 . The state 
space of a three-level system consists of 
sharp states situated at the corners and 
a uniform state, represented by a star, in 
the centre. Its sym metry allows one for 
partitioning Δ 3 into 3! =  6  Weyl cham
bers, shown in (b) with different colors, 
which are asymmetrical simplices char
acterised by a particular ordering of the 
components in the probability vector.

A proof of this theorem can be found in Chapter 2  of Ref. [78].

The above result is a fundamental theorem stating that every bistochastic 
matrix can be represented as a probabilistic mixture of permutation
matrices. The set of bistochastic matrices of dimension N  ×  N , denoted by 
B v , is called the Birkhoff polytope. This set forms a polytope in R ( r f - 1) 

with d l vertices and with centre occupied by the uniform matrix with all 
entries equal to 1/d  (see Fig. 3.2 for a pictorial representation of B 3 ).

A notable property of bistochastic matrices is that they preserve the
identity element of the space of probability distributions, i.e., the uniform 
distribution

1 = j ( 1...... 1) ∙ <3 ∙11>

Note that η  is maximally uncertain as all possible outcomes are equally 
likely and no information is available to predict which outcome will occur. 
Conversely, the “opposite” of a uniform state is the sharp state s ⅛ , with (s ⅛)j = δ  j k , where one outcome is certain to occur, and all others have 
zero probability. Thus, it is a state in which all the information necessary 
to predict the outcome is available. In the space of states, sharp states are 
located at the vertices of the probability simplex, while the uniform state 
is at the centre [see Fig. 3.3a].

Itisimportanttonotethatthe spaceofstatesissymmetricundertheaction 
of the symmetric group ¾ . This symmetry arises from the constraints 
that define the probability simplex, which remain unchanged under 
permutations. As a result, the probability simplex can be divided into d l
equal parts, known as Weyl chambers [79]. Each chamber is composed of
probability vectors that are ordered in non-decreasing order by a specific 
permutation. The chamber corresponding to the identity permutation
is referred to as the canonical Weyl chamber (gray triangle in Fig. 3.3b), 
and all other chambers are images of the canonical chamber under the
action of the Weyl group.

In future considerations, states will always be ordered relative to a 
reference state, and their original order will not play any role in its
description. The reordering will be based on the particular context and 
will possess the characteristics of a partial ordering. This generalises the 
notion of total ordering by allowing incomparability between elements.
Formally, a partial order L  is a binary relation >  over a set S  that satisfies 
three conditions:

i Reflexivity: S i  >  S i

ii Transitivity: if S i  >  S2 and S2 >  S3 then S i  >  S3

iii Antisymmetry: if S i  >  S2 and S2 >  S i  then S i  = S2

Binary relations satisfying only the first two properties are known as 
preorders. We will focus on a special kind of partial order known as
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a lattice and, later in Chapter 4, interpret it from a thermodynamic 
perspective. More precisely, the notion of lattice is defined as follows:

Definition 3.2.1 (Lattice). A partially ordered set (L ,  ≤ ) forms a lattice i f  
for  every pair o f elements p , q ∈ L , there exists a least upper bound, called 
join and denoted by p ∨  q , such that p ∨  q ≥  p and p ∨  q ≥  q ; and a 
greatest lower bound, called meet and denoted by p ∧  q , such that p ∧  q ≤  p 
and p ∧  q ≤  q .

3.3 Majorisation zoo

In the previous section, we reviewed the fundamental concepts of proba
bility distributions and stochastic matrices, along with their underlying 
geometrical properties. Building on this foundation, we will now explore 
an essential tool in the theory of statistical comparisons: majorisation and 
its variants. The concept of majorisation was first introduced by Muir- 
head [80] and later popularised by Hardy, Littlewood, and Pólya [81]. It 
is a powerful and easy-to-use tool that is widely applied to compare two 
probability distributions and assess their disorder. This concept has broad 
applications in various fields, including, economics [82, 83], computer
science [84, 85] and quantum physics [86- 88]. Notably, majorisation has
been particularly useful in quantum mechanics, where it originated in 
entanglement manipulation [86] before spreading to quantum thermody
namics [89], coherence theory [90], and other subfields [91]. The core of 
majorisation and its variants involves ordering a given probability distri
bution based on specific criteria and then applying a set of conditions to 
compare this initial distribution with a target one. Intriguingly, a direct 
link also exists between majorisation and stochastic matrices, which is 
further connected to the existence of certain processes.

6 0

Figure 3.4: Partially ordered set Deo. All
the divisors, when ordered by divisibility, 
form a partially ordered set, which con
stitutes a lattice. For example, 6  ∨  1o  =  3o 
and 6  ∧  1o  =  2

3.3.1 Majorisation

We begin by defining majorisation4 as follows:

Definition 3.3.1 (Majorisation). Given two d -dimensional probability 
distributions p , q ∈ , we say that p  majorises q , and denote it by p >  q ,
if and only if

(3.12)

4: Majorisation can be extended to den
sity matrices, in which case it is viewed as 
a preorder of their spectra. M ore specif
ically, we say that p  >  σ  if λ (p )  >  λ (σ), 
where Λ(χ ) denotes the vector of eigen
values of a matrix χ  [81, 92]

where p  ̂ denotes the vector p rearranged in a non-increasing order.

Equivalently, the majorisation relation can be expressed in a more geo
metric way by defining a majorisation curve5.

Definition 3.3.2 (Majorisation curve). Let p and η  be a d -dimensional
probability vector and a uniform state, respectively. The majorisation curve
is a piece-wise linear curve f p (x ) in R 2 obtained by joining the origin (0, 0)

5: Also known as the Lorenz curve, it was 
introduced by American economist Max
O. Lorenz as a way to visualize wealth 
distribution and inequality among the 
population of the United States [82].
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Figure 3.5: A geometric view o f  majorisation. (a) Majorisation curves for a three-dimensional sharp state s i , p and uniform state η  and (b) 
for three different states q , p and c . Note that while p majorises q [since f p (x) is never below fq  (x )], both states are incomparable with c , 
as their majorisation curves cross with f c (x).

and the points

f k k ∖∑  ^ ,  ∑  P∏  for  k  ∈ { 1...... d } .  (3.13)
lι i= 1 i= 1 )

A distribution p  majorises q if and only if the majorisation curve f p (x ) of 
p  is always above that of q ,

p >  q < ⇒ ∀ x  ∈ [0 , 1] : f p  (x ) ≥  f q (x ) . (3.14)

Majorisation does not introduce a total order. A pair of states p  and q may 
be incomparable with each other, in the sense that neither p  majorises q , 
nor q majorises p . In terms of majorisation curves, this implies that both 
curves intersect each other (see Fig. 3.5b).

The partial ordering of probability vectors induced by majorisation can 
be interpreted as a formalisation of the concept of disorder with respect 
to the uniform distribution q . First, note that sharp distributions majorise 
all other distributions, and all distributions in turn majorise the uniform 
distribution q . Second, one can link majorisation to the concept of entropy 
via a specific class of functions -  those that preserve the majorisation- 
induced partial order structure. This can be more precisely illustrated 
through the following definition:

Definition 3.3.3 (Schur-convex functions). A function f  : R  →  R  is 
called Schur-convex i f  and only if

p >  ⇒  ∕ (p ) ≥  ∕ ( k) (315)

and Schur-concave i f  and only i f  p >  q ⇒  f  (p ) ≤  f  (q ).

The function f  is a homomorphism from the partially ordered set (R n, > )  
to the totally ordered set of real numbers. Examples of such functions 
encompass all Renyi entropies, which, for a d-dimensional probability 
distribution p , are defined as follows

(3.16)



3.3 Majorisation zoo 21

where a  ∈ IR, .The cases a  →  ± ∞  and a  →  1 are defined by suitable limits
¾ ( p ) = - ∑  f = 1 p ι log p,∙ , H ∞ (p )  = -  logmax p i ,  H - ∞  = logmin p i .

t i i i
The case a  = 0 is known as the Burg entropy H o (p ) = ∣∙ ∑f= ι  log P i . 
An example of the Renyi entropy for different values of a  is shown in 
Fig. 3.6.

P

Figure 3.6: Renyi entropy entropy of a ran
dom variable p = (p , 1 -  p) a sa  function 
of p  for the following values of a  = 0 .5 
(red), 1 (yellow), 2 (blue), 10 (purple), 20 
(green) and 50 (orange).

Majorisation hierarchy

For d-dimensional vectors, we have

We are now ready to establish the connection between majorisation 
relations and bistochastic state transformations, as captured by the 
renowned Hardy-Littlewood-Pólya theorem [81].

Theorem 3.3.1 (Majorisation & bistochastic matrices). There exists a 
bistochastic matrix Λ0, Λ0^ = η , mapping p to q i f  and only i f  p >  q .

See Chapter 2 of Ref. [93], for a proof of the Hardy-Littlewood-Pólya 
theorem. Now, let us briefly discuss the significance of this result. Firstly, 
it is important to note that the existence of processes connecting two 
probability distributions is directly related to a majorisation relation. This 
constitutes the bedrock of this thesis, as most of the presented results 
focus on generalisations of this theorem within a given context. For in
stance, the conditions for the existence of entanglement transformations 
between pure bipartite states under Local Operations and Classical Com
munication (LOCC) can be reframed in terms of majorisation, allowing us 
to determine whether a given LOCC exists [86]. As we shall see, at infinite 
temperature [β = 0 in Eq.(3.17)] or when energy levels are degenerate, 
thermodynamic transformations are described by bistochastic matrices. 
In such a scenario, the Hardy-Littlewood-Pólya theorem plays a vital role 
in identifying the set of allowed transformations. Thus, Theorem. 3.3.1 
serves as a cornerstone for subsequent results.

3.3.2 Thermomajorisation

The partial ordering of probability vectors, which is induced by majori
sation, can be conceptualised as formalising the measure of disorder 
relative to the uniform distribution q . One might then pose the question 
of whether a majorisation relative to a general probability distribution can 
be defined, so that disorder is measured relative to a generic non-uniform 
distribution. This question was addressed in Refs. [94, 95], where the 
concept of d -majorisation was formalised and introduced. Mathemat
ically, for a given vector d , we say that p d-majorises q , and denote by 
p > a  q , if there exists a stochastic matrix Λ d , which leaves the vector d 
invariant and maps p  into q -  such a matrix then is called d -stochastic.

In this section, we introduce the notion of thermomajorisation [55] -  
the thermodynamic analogue of majorisation. It defines a partial order
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relation relative to the thermal distribution

γ  = —  1 e ~β ε ι , . . . , e ~Pe^ , (3.17)
λ  ∑ f = 1 e - ê≈

rather than the uniform distribution η . Generally, we will say that a 
given distribution p thermomajorises a target distribution q if there exist 
a stochastic matrix that preserves the Gibbs state γ  and maps p  into q .
Due to the importance of this class of matrices, we define it as follows.

Figure 3.7: Embedding scheme. Loosely
speaking one can understand the em
bedding map as a transformation that 
allows for translating between different
descriptions of a physical system. If p
represents a  statistical description of a 
system in the canonical ensemble, then
p describes the same state in the micro
canonical ensemble [96]. This can be seen 
from the representation of the embedded
version of p -  the sum of smaller blocks 
yields the larger one. Note that the em
bedded version of a thermal start results
in a flat state.

Definition 3.3.4 (Gibbs-preserving matrix). A stochastic matrix is called
Gibbs-preserving (GP), and denoted by Aβ , i f  it leaves γ  invariant:

A β γ  = γ . (3.18)

To formally define the concept of thermomajorisation, we start by defining 
the concept of an embedding map.

Definition 3.3.5 (Embedding map). Given a thermal distribution γ  with 
rational entries, y ,∙ = D i ∕D  and D i , D  ∈ N , the embedding map Γ sends 
a d -dimensional probability distribution p to a D -dimensional probability 
distribution p  := Γ (p ) as follow:

(3.19)

Irrational values of y ,∙ can be approached with arbitrarily high accuracy 
by choosing a sufficiently large value of D . Although it is not necessary,
for the purpose of using the embedding map as a technique, we will
express the thermal distribution γ  as a probability vector with rational 
entries,

(3.20)

Moreover, we will refer to the sets of repeated elements above as embed
ding boxes [see Fig. 3.7 for an illustrative example].

Embedding map example

Given a thermal distribution γ  = (3∕ 6 , 2∕ 6 , 1∕ 6) and a three-dimensional 
probability distribution p = (7∕10, 2∕ 10, 1∕ 10), the embedding map Γ 
sends p  into

See Fig. 3.7 for an illustrative example.

We also observe the following effect by embedding both the maximally
mixed states and the sharp states:
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Observation 3.3.2 (Embedded maximally mixed & sharp states). The
embedded version o f a thermal state γ  is a maximally mixed state over D  

states
t = < = ( ⅛ .......⅛ )  1

and the embedded version of a sharp state s ⅛ is a flat state that is maximally 
mixed over a subset o f  D ⅛ entries, with zeros otherwise:

(3.22)

We now prove that the existence of a Gibbs-preserving matrix between
p  and q is equivalent to the existence of a bistochastic matrix between
them:

p = q Λ p = q , (3.23)

where ΛV = ΓΛ ^  Γ - 1 is the embedded version of Λ ^ . This in turn, allow
us to state the following result:

Lemma 3.3.3 (Embedded GP matrix). The embedded version of a Gibbs-
preserving matrix Λ  is a bistochastic matrix Λ0.

Proof. The matrix elements of ΛV are given by

(3.24)

 ̂β
so the conditions for bistochasticity of Λf  yields

∀ i  : ∑ ∑  Γ α Λβk, Γ - 1 = 1 , ∀  : ∑ ∑  Γ k Λ βk , Γ - 1 = 1. (3.25)
7=1 k ,l= 1 i= 1 k ,l= 1

Using the explicit forms6 of Γ and Γ - 1 , we note the following. First, for
all l , we have ∑ j  Γ - .1 = D ι . Second, for all k , it follows that i∙ Γ i∙⅛ = 1.
Thus, we can simplify the conditions specified by Eq. (3.25) to obtain the 
following

(3.26)

Taking into account that for a fixed i and j  there is just one non-zero 
element of Γ , Γ i∙⅛ = 1∕D k , and one non-zero element of Γ - 1, Γ - .1 = 1, we
get

The first condition is fulfilled because is Gibbs-preserving (recall that 
γ i = D ι /D ) and second condition is fulfilled because Λ^  is a stochastic
matrix.

The fact that the embedded version of a GP matrix is a bistochastic matrix

6: By writing out the embedding matrix 
Γ, we obtain
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enables us to make a connection to majorisation, as demonstrated by the 
following lemma.

Lemma 3.3.4 (GP matrix & majorisation). There exists a Gibbs-stochastic
matrix such that p = q i f  and only i f  Γ (p ) >  Γ (^ ).

Proof. As shown in Equation (3.23), the existence of a Gibbs-preserving
matrix between vectors p  and q is equivalent to the existence of a 
bistochastic matrix between the pair of embbeded vectors p  and q . By 
leveraging this observation and combining it with Theorem 3.3.1, we
prove Lemma 3.3.4.

Finally, one can establish a relationship that generalises the concept of 
majorisation. Specifically, we will show how the requirement that the 
embedded distribution p  majorises q can be restated as a thermomajori- 
sation condition using only p  and q . Let us start by first defining the 
thermodynamic-ordering known as ^ -ordering:

Figure 3.8: Chambers and β -ordering.
Each permutation defines a  different
^ -ordering, which, in the space of states,
is represented by a chamber. In the case 
of a three-level system, there are six dis
tinct ^ -orderings, corresponding to six
chambers. The asymmetry within each
chamber arises due to the fact that β  >  0. 
The thermal state γ  is depicted by a black
star ★.

Definition 3.3.6. (^ -ordering). Let p and γ  be a probability vector and 
its corresponding thermal Gibbs distribution. The β -ordering o f p is defined 
as the permutation n p  that arranges the vector (p i / y i , . . . , p ∣ι ∕γ a ) in a 
non-increasing order, i.e.,

P β = ( p √ ( 1 ) ......... Pπ f w )  . (3.28)

Each permutation belonging to the symmetric group, π  ∈ S ∣j , defines a 
different β -ordering on the energy levels o f the Hamiltonian H  [see Fig. 3.8].

The main motivation for introducing the ^ -ordering is due to the fact that 
sorting the embedded distribution p  in non-increasing order corresponds 
to the ^ -ordering of the d-dimensional probability distribution p . To 
clarify, the vector p ^  comprises groups of embedding boxes arranged in a 
non-increasing order, with each group consisting of D i elements. If each 
group is replaced with its sum, which is equal to p ,∙, one would obtain a ^ -ordered version of p .

^ -ordering example

Given a thermal distribution γ  = (3∕ 6 , 2∕ 6 , 1∕6) and the probability 
distributions p = (7∕ i 0 , 2∕ i 0 , 1∕ 10) and q = (1∕ 5 , l6∕ 25 , 4∕ 25),the ^ -ordered 
vectors of p  and q are

Next, we introduce the generalisation of the concept of majorisation 
curves, i.e., thermomajorisation curves:

Definition 3.3.7 (Thermomajorisation curve). Let p and γ  be a probability
vector and its thermal Gibbs distribution, respectively. The thermomajorisation
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(a)

Figure 3.9: A geometric view o f  thermomajorisation. (a) Thermomajorisation curves for a three-dimensional probability distribution p with 
β-order (1,2,3) are presented alongside the curve associated with the thermal state γ . Panel (b) displays the thermomajorisation curves of 
p and q , the latter having ^ -ordering (2,1,3). Both vectors are incomparable since their thermomajorisation curves intersect.

curve is a piece-wise linear curve f p  (x ) in R 2 obtained by joining the origin(0,  0) and the points

(3.29)

for k  ∈ { 1, . . . ,  d } .

Given two d-dimensional probability distributions p  and q , and a fixed 
inverse temperature β , we say that p thermomajorises q and denote it as

Ω Ω
P > β q 7, if the thermomajorisation curve f jf  is above everywhere,
i.e.,

P > β q V X ∈ [0, 1] : f pβ (x ) ≥  f lβ (x ) . (3.30)

7: Historically, thermomajorisation
should be denoted by > γ  since the 
vector being preserved is γ . However, 
the community has adopted > β , given 
that γ  is associated with the inverse 
temperature.

As before, it may happen that given two vectors, p  and q , are incom
parable, meaning that f β  and j y  cross at a some point (see Fig. 3.9b). 
Importantly, in the case of uniform equilibrium distributions, γ  = q ,
thermomajorisation is replaced by majorisation. For a fixed dimension,
the sharp distribution with largest energy, s i  = (0 , . . , 1), thermomajorises 
every other distribution, and every distribution thermomajorises γ .

As a result, we can show the following:

Lemma 3.3.5 (Majorisation between embedded vectors). Theinitial state 
p thermomajorises the target state q i f  and only i f  p >  q .

Proof. The non-increasing order of D -dimensional probability distribu
tions p  and q corresponds to ^ - ordering the d-dimensional probability 
distributions p  and q . Moreover, by summing up each embedding box, we 
obtain the ^ -ordered versions of p  and q . Now, note that the majorisation 
curve of p  and q will be composed of linear segments connecting the 
points (∑ (= 1 D β , ∑ i x β ), where x,∙ = p,∙, q ι and γ ι = D i /D . As a result, 
the curves fp  and J y  correspond exactly to the thermomajorisation curves 
of p  and q , and therefore, p > β q is equivalent to p >  q . □
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Combining all these results, Theorem 3.3.1 can be generalised from 
bistochastic matrices to Gibbs-preserving matrices:

Theorem 3.3.6. (Thermomajorisation & GP matrices). There exists a
Gibbs-preserving matrix mapping p to q i f  and only i f  p > β q .

P
Figure 3.10: Continuous thermomajorisa-
tion. A probability vector p continuously 
thermomajorises g  if there exists a con
tinuous probability path r ( f ) connecting 
both vectors, ensuring that r ( fχ) > β  r (t2) 
whenever fχ ≤  t2

3.3.3 Continuous thermomajorisation

Majorisation and thermomajorisation are relationships linking the initial
and target distributions, while nothing is said about the path in
connecting these two distributions. One can then ask if there exists a
continuous path within the probability simplex connecting these two 
distributions, such that the preceding distribution is thermomajorised
by the succeeding one at any two points along this path. This question 
raises the concept of continuous thermomajorisation [57], which can be 
mathematically defined as follows (see also Fig. 3.10).

Definition 3.3.8 (Continuous thermomajorisation). A distribution p 
continuously thermomajorises, denoted p q , i f  there exists a continuous
path o f probability distributions r (t ) for  t ∈ [0, t y ) such that

1. r  (0) = p ,
2. ∀  t ι , t 2  ∈ [0 , t f ) : tι  ≤  t2 ⇒  r (h )  > β r (t 2),
3  r (t f ) = q .

The path r (t ) is called thermomajorising trajectory from p to q .

Let us make a few comments about the aforementioned definition. Firstly, 
it is worth noting that when there is a uniform fixed point, γ  = η , the above
definition corresponds to a continuous version of standard majorisation,
denoted by >  [97]. Secondly, determining whether a given initial state
continuously thermomajorises a target state is a difficult problem, and
unlike the other variants of majorisation presented so far, there is no
continuous thermomajorisation curve for this type of majorisation that 
would facilitate a quick check. Nevertheless, the necessary and sufficient
conditions are known [59]. These comprise a complete set of entropy 
production inequalities that can be reduced to a finitely verifiable set 
of constraints. Moreover, Ref. [59] presents an explicit algorithm for
verifying the continuous thermomajorisation relation between any two
vectors. An implementation of this algorithm in Mathematica is provided
in Ref. [98].

To understand how the concept of continuous thermomajorisation re
lates to the existence of given processes between two distributions, we
introduce the following definition [99].

Definition 3.3.9 (Markovian classical dynamics). A distribution p can be 
mapped to q by a classical master equation with a fixed point γ  if  a continuous 
one-parameter family o f  rate matrices, denoted by L (t ), exists. This family 
generates a set o f stochastic matrices represented by Λ  (t ), such that

Λ^ (t f  )p = q , L (t~)γ  = 0 for all t ∈ [0, i f ) . (3.31)
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This definition naturally generalise to quantum dynamics in the following 
way

Definition 3.3.10 (Markovian quantum dynamics). A distribution p can 
be mapped to q via a quantum master equation with a fixed point γ  i f  there 
exists a continuous one-parameter family o f Lindbladians, denoted by L (t ) . 
This family generates quantum channels E  (t ) such that

= p q , L (f )[p y ] = 0 for  all t ∈ [0, t f ) . (3.32)

where p t  = ∑ k t k |k ){k |.
The previous definitions encapsulate the set of transformations realised
by Markovian master equations with a fixed point γ . As will be properly 
defined in Section4, we will referto suchquantumdynamicsasMarkovian 
thermal processes. Crucially, the concept of continuous thermomajorisation
encompasses all constraints of memoryless processes on population 
dynamics. This is expressed in the following theorem:

Theorem 3.3.7 (Continuous thermomajorisation & Markovian thermal 
processes). There exists a Markovian thermal processes mapping p (0) to 
p (t f ) i f  and only i f  p p (t f ).

Theproofoftheabovetheoremcanbefound inAppendixAofRef.[57].A s 
a result, continuous thermomajorisation provides a full set of constraints
for the population's evolution.

Proposition 3.3.8 (Equivalence between thermomajorisations). If a pair 
o f states, p and q , have the same β -ordering, and p > β q , then p q .

The proof of the above proposition can be found in Appendix A of
Ref. [57] .

Given that continuous thermomajorisation characterises Markovian pro
cesses, while thermomajorisation characterises general processes, includ
ing non-Markovian ones, the aforementioned result highlights that all 
the complications associated with Markovianity (or advantages arising
from non-Markovianity) stem from crossing the boundary between Weyl
chambers. This observation will play a crucial role in Chapter 6  as we 
explore the significance of memory effects in stochastic processes with a 
fixed point.

3.3.4 Approximate thermomajorisation

Although an initial distribution p  may not thermomajorise a target 
distribution q , it may thermomajorise a final distribution q that is 
close to the target1". This idea gives rise to the concept of approximate 
thermomajorisation, meaning that for a given distribution and a specified 
distance δ , we allow the final state to differ from the target state, as long
as it is close enough (see Fig. 3.11).

Figure 3.11: Approximate thermomajorisa-
tion. W hile an input distribution p may
not thermomajorise a target distribution
q , it can still thermomajorise a distribu
tion q that closely approximates the tar
get. The e-circle represents sets of prob
ability distributions that are each at a 
distance less than e from both p and q .

t Note that the same definition applies to majorisation, as this represents a particular case 
of thermomajorisation when β  = 0.
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We will measure the distance between states using the infidelity,

δ (p , q ) := 1 -  F (p , q ) , (3.33)

where the fidelity (or Bhattacharyya coefficient) is

(3.34)

The two important properties of the infidelity that we will utilise through
out this thesis are as follows. First, since fidelity is non-decreasing under 
stochastic maps, we have

δ (Λp , Λ q ) ≤  δ(p , q ) . (3.35)

Second, the distance δ between two probability vectors is identical to
that between their embedded versions, i.e.,

δ(p , q) = δ ( p , q') , (3.36)

which can be verified by direct calculation.

Two commonly referred to definitions of approximate majorisation and 
thermomajorisation are known as 'pre' and 'post', which are defined as 
follows [100]:

Definition 3.3.11 (Pre-and-post-thermomajorisation). A distribution q 
is said to be "e -pre-thermomajσrised" by a distribution p , denoted as p ε > β q , 
i f  there exists a distribution p such that:

p > β q and δ (p , p ) ≤  e ,  (3.37)

where δ (-, ∙) represents the infidelity.

On the other hand, a distribution q is said to be "e -post-thermomajorised" by 
a distribution p , denoted as p q , i f  there exists a distribution q such that:

p > β q and δ (q , q ) ≤  e .  (3.38)

In the special case where β  = 0 and thermomajorisation corresponds to 
majorisation, we refer to it as pre- and post-majorisation, denoted as e >  and 
> ε , respectively.

Let us provide some comments regarding the definition mentioned above.
Firstly, it is worth noting that according to Theorem 3.3.6, p ε  > β q implies 
the existence of a state p  in the vicinity of p  and a mapping Λ^  that 
transforms it into q . Similarly, p > ε q implies the existence of a mapping 
Λ,P that transforms p  into q , which lies in the vicinity of q .

Vidal, Jonathan and Nielsen's algorithm for approximate majorisation

We now describe the algorithm introduced in Ref. [101] for constructing
the optimal distribution satisfying the following constraint:

p★ = argmax F (p , p ) . (3.39)
P -.p>q
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In other words, for a given pair of states p  and q , such that p q , we 
seek the optimal p * , which maximises the fidelity for a given e .

We begin by assuming that all the distributions are ordered in a non
increasing manner. Then, for any distribution t , we define the following 
quantity:

Φ =  Σ  I. , ∆ 1  (t ) := tj - '  f , = E∙l ι  -  ε ∙h . (3.40)
i= k i= k ι

It is straightforward to verify that if p >  q , then ≤  for all k. Now, 
for a given p  and q , the construction of p *  is obtained by the following 
iterative procedure. Set lo = d  +  1 and define"

Δ -  (q)  4 1 (? )
l i := argmax - , n  := - . (3.41)

⅛< ∕, ∙- ι  a (p ) a;;1 (p )
If the minimisation defining lj  does not yield a unique solution, then 
lj  is chosen to be the smallest possible value. We will also denote N  

as an index for which = 1. The ∕ -th entry of the optimal vector for 
i  ∈ lj , . . . ,  lj - ι -  1 is then given by

P *  = r j p i . (3.42)

It is direct to verify that p *  is normalised, and p *  >  q , as the construction 
guarantees that E ζ  ≤  E^ for all k . Furthermore, the optimal fidelity 
between p  and a distribution that majorises q is given by

(3.43)

The critical observation, which is essential for proving the optimality of
the above is that for all j , we have

(3.44)

This is deduced from the definitions of lj , rj , and the fact that for 
a ,  b , c , d  >  0, one observes (see to Ref. [101] for details)

(3.45)

Approximate majorisation

Let p = (0 .7, 0 .2 , 0 .1) and q = (0 .75, 0 .13, 0 .12) . Since p-[ <  q-[ and
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P l  +  P 2 >  +  tf2 , the two vectors are incomparable. By using the
algorithm mentioned above (available in Mathematica code form 
here [102]), we obtain the approximate state p = (0 .75, 0 .17, 0 .08), 
with a fidelity of F (p , p ) = 0 .774597.

3.3.5 Catalytic majorisation

As previously discussed, majorisation introduces a partial ordering in 
the space of states, resulting in not all states being comparable to each 
other. There generally exists a pair of states, p  and q , such that neither 
p >  q nor q >  p . In this scenario, we refer to p  and q as incomparable.
Nevertheless, there exists a possibility of 'borrowing' an ancillary system
c that aids in performing a transformation, but its resources are not used
up. In the language we have introduced, this implies that the composite
system satisfies the following equation

p  ® c >  q ® c . (3.46)

Therefore, the auxiliary system c allows one to perform an otherwise 
impossible transformation without being disturbed, as it is returned 
unchanged at the end of the process. Such an auxiliary system is referred 
to as a catalyst. Different ways of relaxing Eq.(3.46) lead to different types 
of catalysis (see Section III of Ref. [103] for an extensive discussion on the
topic). However, here we will primarily discuss the case where Eq. (3.46) 
is strictly satisfied, i.e., the state of the catalyst is precisely the same as at
the beginning and the joint system does not become correlated.

Catalytic majorisation [88]

The pair of states p = (0 .5, 0 .25, 0 .25, 0) and q = (0 .4 , 0 .4 , 0 .1, 0 .1) are 
incomparable as neither p q nor q p . It can easily be checked 
that p 1 >  ^1 but p 1 +  p 2 <  ^1 +  ^2 ∙ However, note that the two-level 
catalyst c = (0 .6, 0 .4), leads to the following joint states

p ® c = (0 .30, 0 .20, 0 .15, 0 .15, 0 .10, 0 .10, 0 .00, 0 .00) , 

q ® c = (0 .24, 0 .24, 0 .16, 0 .16, 0 .06, 0 .06, 0 .04, 0 .04) ,

so that now p ® c >  q ® c .

There are three important properties of catalytic transformations that 
deserves to be highlighted [88, 104]:

(P1) Largest and smallest element. Given two incomparable states p 
and q , along with a catalyst c , such that p ® c >  q ® c , it follows 
that the largest element of q is always smaller than the largest 
element of p , and conversely, the smallest element of q is always 
larger than the smallest element of p

(P2) Uniform state. No transformation can be catalysed by a uniform
state q .

(P3) Minimal dimension When d = 2, either p >  q or q >  p , rendering 
the use of a catalyst irrelevant. For two 3-dimensional incomparable 
states p  and q , there exists no catalyst vector c such that p ® c >  q ® c . 
Therefore, a catalytic transformation is only possible when d ≥  4
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Properties (P1), (P2), and (P3) also apply to thermomajorisation. However, 
in this context, the uniform state is replaced by the thermal Gibbs
distribution. While thermomajorisation allows incomparability even
when d  = 2, property (P3) continues to hold true in this scenario [56].

The conditions for a catalytic state-transformation were first derived in 
Ref. [105, 106], and are known as trumping conditions. More precisely,
Given two d-dimensional probability distributions p  and q and a catalyst 
c , we say that p  trumps q when

p  ® c >  q ® c < ⇒ H a (p ) ≤  H a (q ) . (3.47)

3.4 Concluding remarks

This chapter aimed to provide a concise introduction to the key concepts 
that will be explored throughout this thesis. We focused on presenting 
well-established results without delving into their proofs or intricate 
mathematical details. Since much of the mathematics in this thesis will 
take place in the probability simplex, special emphasis was placed on 
the properties of probability distributions, majorisation and its variants. 
Many notions outlined in this chapter will be further clarified in their 
specific contexts later on.



4 Resource theory of 
thermodynamics

Resource theories emerged from the desire to manipulate entangle
ment [107, 108] and quickly spread to other areas of quantum infor
mation [57, 109- 113]. As a theoretical toolkit capable of uncovering the
limitations of a given system undergoing a certain process, it became 
a widely adopted framework in recent decades. At its core, it involves 
identifying and characterising which operations are easy and hard to 
implement when subject to constraints, such as locality, experimental dif
ficulties in preparing specific superpositions, or fundamental restrictions 
induced by physical laws like energy conservation. This is where the term 
resource comes into place. The natural question then is what distinguishes 
these resources as resources? If one thinks about entanglement as a resource, 
Bell states would be the most valuable states among all others, while 
separable states would fall into the opposite category, namely free. As a 
result, from a resource point of view, a given context results in a partial 
ordering of the set of quantum states, with the hardest to prepare at the 
top, and easiest at the bottom. A generic resource theory is determined 
by three ingredients [60]: (i) free operations F  , (ii) free states O  and (iii) 
a set of monotones M.

A class of free operations is a set of transformations that can be imple
mented at no cost. Similarly, free states are those that can be generated 
and used without any expenditure of resources. On the other hand, mono
tones are real-valued functions that quantify the amount of a resource in 
a given state that is not free. Given the aforementioned operations, free 
and resource states, one can ask about the fundamental limitations of
manipulating states. More precisely, for a pair of states p  and σ , our inter
est lies in determining the possibility of transforming these states using 
the allowed operations. Naturally, this process involves identifying the 
set of necessary and sufficient conditions for the given transformation:

allow ed operations
p -------------------- → σ . (4.1)

The conditions underlying Eq. (4.1) can be either necessary or sufficient, 
and in some cases, both. These are typically expressed in terms of 
monotones, indicating that for a transformation to be possible one needs
M (p ) ≥  M (σ ). However, it is not always the case that one can find a set
of monotones that completely characterises a given transformation.

A celebrated example of this approach is the entanglement theory, which
can be cast as a resource theory [107]. The starting point is to assume 
that Alice and Bob are two distant parties who are capable of creating 
any local quantum states in their own labs and manipulating them 
via arbitrary local operations. Additionally, we also assume that both 
can easily communicate with each other classically. This defines a set of
operation known as local operations and classical communication (LOCC) 
that one takes as a free set. Such operations allow Alice and Bob to create 
a joint, correlated bipartite quantum states, Pab. However, by imposing 
the constraint that Alice and Bob can only employ LOCC, they are unable 
to create any entanglement. As a result, the joint quantum state Pab is
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separable and, hence, free. Thus, any initial entangled state that Alice and 
Bob share becomes a valuable resource. This pre-existing entanglement 
can be harnessed for practical purposes, such as teleportation [114, 115].
In the light of Eq. (4.1), suppose Alice and Bob jointly possess a pure
state ∣ψ } . Using local operations and classical communication, one can 
ask whether is possible for Alice and Bob to transform ∣ψ} into another 
state : ∣ψ> →  ∣φ ) (4.2)

The answer to this question will be presented in Chapter 5. The key 
takeaway is that is for transformations involving bipartite pure states [as 
in Eq. (4.2)], the necessary and sufficient conditions are known [86]. 

When discussing thermodynamics, one of the most fundamental ques
tions to ask is what state transformations systems can undergo while interacting 
with a thermal bath. Since the laws of thermodynamics impose funda
mental constraints on how states can be manipulated, one can adopt the 
resource-theoretic perspective and cast this theory as resource theory.
Several different approaches have been explored [116- 121], but almost
all can be described within a common framework. The central idea is to 
define free operations as those that conserve certain extensive properties 
(such as energy, particle number, etc.) when a given system interacts with
a bath. Our focus is on the resource theory of athermality [89], which
involves just energy conservation. The concept of free operations, initially
introduced by Janzing [54] and subsequently expanded upon [55- 58],
encompasses all physical dynamics that conserve the total energy when 
the system interacts with a thermal bath. These processes, referred to as 
thermal operations [122], represent the most general approach to describing 
the joint system-bath dynamics.

Such an approach allows one to go beyond the thermodynamic limit
and the assumption of equilibrium. Its generality allows us to describe 
the structure of non-equilibrium states and quantify the thermodynamic 
properties of systems without explicitly solving for the specific dynamics.
This opens the door to exploring how quantum properties can be har
nessed and sheds light on optimal strategies for certain thermodynamic
tasks.

In this chapter, we introduce the resource-theoretic approach to thermody
namics and primarily cover well-known results. The concepts discussed 
here will serve as fundamental building blocks for the rest of the thesis.
The chapter is organised as follows: firstly, we formally introduce the 
set of free operations known as thermal operations. Next, we provide a
brief interlude on information-theoretic quantities and their thermody
namic interpretations. The subsequent section focuses on addressing 
Eq. (4.1) in the context of thermal operations and energy-incoherent
states. Subsequently, we explore the applications of the aforementioned
framework. We conclude the chapter by revisiting the open quantum
system approach to quantum thermodynamics.
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4.1 Resource theory of states out of equilibrium

Figure 4.1: Thermal operation snapshots. 
(a) A quantum system (represented by a 
blue circle), previously isolated, is cou
pled to a heat bath (shown as a collection 
of small red circles). (b) The joint sys
tem is assumed to be closed and thus 
evolves unitarily, conserving the total 
energy. (c) After some time, the system 
(now in a different state and represented 
by a green circle) is decoupled from the 
bath.

Consider a finite-dimensional quantum system in the presence of a heat 
bath at temperature T * . The system under investigation is described by a 
Hamiltonian H , and it is prepared in a state p ; while the heat bath, with 
a Hamiltonian H e , is in a thermal equilibrium state,

e

where β  = l /k s T  is the inverse temperature with λ⅛ denoting the 
Boltzmann constant.

N  particles system

This framework can also be employed when the initial system is 
composed of N  non-interacting subsystems with the total Hamiltonian 
H n  and a state p N given by

N
H n  = ∑  H n

n= 1

N
PN = 0  P n

n= 1
(4.4)

A typical example of this setting is when initial and target systems 
are given by copies of independent and identical subsystems. More 
precisely, in this case, the family of initial systems is given by H n  

with H f  = H  and p N = p ® N .

The evolution of the joint system is assumed to be closed and described 
by a unitary operator U  that is further required to conserve the total 
energy (see Fig. 4.1 for a pictorial representation)

[H , H  ® I f  +  1 ® H e ] = 0 . (4.5)

This assumption is typically made to ensure that the transformation 
is consistent with the laws of thermodynamics. Moreover, note that 
in general U  does not commute with H  and H e individually, only 
with their sum. As a consequence, the set of allowed thermodynamic 
transformations is modelled by a set of operations called thermal operations 
(TOs), which are defined as follows:

One can also define catalytic thermal op
erations [56]. In addition to thermal op
erations, an ancilla, termed the catalyst, 
is borrowed under the condition that it 
is returned in the same state, in product 
form with the other systems.

Definition 4.1.1 (Thermal operations). The set o f thermal operations 
(TOs) consists of completely positive, trace-preserving (CPTP) maps that act 
on a system as

<=E(p ) = TrE [H  (p  ® y E) U + ] , (4.6)

with U  satisfying Eq. (4.5) and the state γ E given by Eq. (4.3) with an 
arbitrary Hamiltonian H e .

* Throughout this thesis, the terms "temperature T" and "inverse temperature β" will be 
used interchangeably
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Thermal operations are designed to be as general as possible and capture a 
wide range of transformations, including both reversible and irreversible, 
as well as Markovian and non-Markovian ones.

Note that if the system was initially out-of-equilibrium with respect to the 
thermal reservoir when they were brought into contact, then it is natural 
to expect that a thermal state can be prepared without the expenditure 
of any resource by letting the system equilibrate with the thermal bath. 
In this case, the only free state is the thermal Gibbs state and therefore, 
any out-of-equilibrium state is a resource. From the perspective of the 
channel defined in Eq. (4.6), one can uncover two essential properties: 

(P1) Preserves the thermal state. The Gibbs state of the system,

e ∙ ' '
7 = tr(e ~?H ) '  (4.7)

is a fixed point of the dynamics, i.e.,

E ^  (y) = γ .  (4.8)

(P2) Covariance. Thermal operations are time-translation covariant,

E ? (e ~iHt p e iH t) = e ~iHt EE (p )e i∏t . (4.9)

The first property, combined with a contractive distance measure δ  that 
satisfies δ (p ,  γ ) ≥  δ [E ^ (p), E ^ (y)] = δ [E ^ (p ) , y ] , reflects the fundamen
tal principle of the second law of thermodynamics. This principle states 
that a system will evolve towards thermal equilibrium, meaning it cannot
be transformed into any other out-of-equilibrium state without cost -
both properties are illustrated in Figs. 4.2 and 4.3.

A physical model of TO [123]

The Jaynes-Cummings model reproduces the behaviour of the set
of thermal operations for a range of physically relevant parameters. 
This model describes the interaction between an atom with a single 
electromagnetic field mode in an optical cavity.

Figure 4.3: The first law . This symmetry 
reflects the absence of an external time 
reference. If the thermal environment af
fected the system differently depending 
on when a thermal operation is applied, 
it would be possible to extract “time-like” 
information from the final state.

In this case, the cavity is modelled by bosonic creation and anni
hilation operators a + and a , with Hamiltonian H c = ω c fl+a , where 
ω c  is the angular frequency of the mode. The atom, a two-level 
system with energy levels | g }  and | e } , and raising and lowering op
erators σ +  = |e }(g | and σ -  = |g ){ e |, is described by the Hamiltonian 
H A = ω Aσ z , where ω A is the transition frequency of the two-level 
system and σ z is the Pauli-z matrix. These two systems interact 
through the Jaynes-Cummings Hamiltonian, which in the rotating
wave approximation, is given by:

(4.10)

When the two-level system is driven on resonance, meaning ω c  = ω A, 
the unitary evolution generated by the Jaynes-Cummings Hamilto
nian, U (t ) = e ~ lH t, conserves the total energy of both systems. This 
can be seen by noting that [H (t ) , H ] = 0 for all times t .
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∣ Equilibrium
Figure 4.4: Thermodynamic ordering. Ther
modynamic transformations between 
states follow a partial ordering relation. 
The existence of a thermal operation map
ping an initial state to a target state is 
depicted by an arrow. Note that, beyond 
the thermodynamic limit, not all states 
are comparable.

The evolution of systems towards thermal equilibrium reveals a fun
damental aspect of the theory: any initial state cannot be transformed 
into any final state. In other words, not all quantum states are equally 
valuable, leading to a hierarchical ordering of the set of quantum states, 
with the most resourceful at the top and least resourceful at the bot
tom (see Fig. 4.4). The natural question is how to quantify and evaluate 
the resources present in a given quantum state. This leads to the concept 
of thermodynamic monotones, which are mathematical functions that 
do not increase under free operations. They are formally defined as 
follows.

Out of 
equilibrium Definition 4.1.2 (Thermodynamic monotone). A function M  that maps 

the set o f quantum states to non-negative real numbers 1R,+ U {0} is a 
thermodynamic monotone if  and only if  it satisfies the following two conditions:

1. M [E (p)] ≤  M (p ) .
2. M (γ ) = 0.

For E ' being a thermal operation.

In a resource-theoretic language, monotones are functions that quantify 
the amount of resources present in a given state and provide insight 
into how these resources can be transformed or manipulated using the 
allowed operations. Since the set of allowed operations cannot create 
resources for free, this requirement is encoded in the first property, while 
the second follows from the fact that free states do not have any resources. 
A non-trivial example of a thermodynamic monotone is the relative 
entropy or Kullback-Leibler divergence between a given state p  and the 
thermal Gibbs state γ . A detailed discussion of this example will be 
presented in the next section.

4.1.1 Information-theoretic notions and their 
thermodynamic interpretation

In classical thermodynamics, an equilibrium system in the presence of 
a heat bath at inverse temperature β  is completely characterised by its 
free energy. Specifically, for an equilibrium state γ , with internal energy 
denoted by U (γ") and Gibbs entropy S (γ ), the free energy is defined as

1
F (y) := U ( γ )  -  - S ( γ ) .

This quantity is related to the partition function Z  via [2]

(4.11)

(4.12)

One of the manifestations of the second law of thermodynamics is that for 
a system interacting with a bath in thermal equilibrium, the maximum 
amount of work that it can perform (that can be extracted from the 
system) is bounded by the difference ΔF  between its initial and final free 
energy [1, 2]. Traditionally, the free energy has been defined only for states 
at thermal equilibrium. However, taking into account its operational 
meaning, one can extend its definition to investigate also the case of
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non-equilibrium states. More precisely, for any d-dimensional quantum 
state p , the relative entropy D  between p  and a thermal Gibbs state γ

D (p ∖∖γ ) ∙= tr[p (log p  -  log y ) ] , (4 .13)

can be interpreted as a non-equilibrium generalisation of the free energy
difference between a state p  and a thermal state γ . This can be easily seen
by manipulating Eq. (4.13) to arrive at

where S (p ) ∙= -  tr(p log p) is the von Neumann entropy. Defining the 
non-equilibrium free energy as F (p) ∙= (H }p -  S (p )∕β , we observe 
that Eq. (4.14) expresses a difference between free energies. One term
originates from the non-equilibrium contribution, while the other stems 
from the equilibrium part:

1- D (p ∣|γ ) = F (p ) -  F (γ ) . (4.15)

We can further define the corresponding relative entropy variance V  and 
the function Y  related to relative entropy skewness [100, 124, 125]:

V (p ∣∣γ ) ∙= tr {p (log p - log γ  -  D (p ∣∣y))2} , ( Y I M

∣∣γ ) ∙= tr {p ∣log p - log γ  -  D (p ∣∣y)∣3} . (4 .16b)

Denoting the average of an observable O  in a state p by ( O } p = tr(p θ ), 
we can introduce a random variable log p -  log γ , so that the divergence
can be interpreted as the expectation value of the difference-likelihood.
Similarly, the relative entropy variance and skewness correspond to the 
variance and the third moment of the random variable.

The higher moments can then be understood as fluctuations of the non
equilibrium free energy content of the system. This is most apparent for
pure states p = ∣ψ }(ψ ∣, as V  simply describes energy fluctuations of the 
system:

j 2 v ( ∣ ψ X ψ ∣ ||γ ) = (ψ∣ H 2 1 ψ> -  (ψ∣ H  ∣ ψ>2 . (4.17)

In particular, as noted in Ref. [100], when p = γ '  is a thermal distribution 
at some different temperature T ' ≠  T , the expression for V  becomes

V ( ∕ ∣ ∣ γ ) = ( l  -  ∙ c-ĵ ,  (4.18)

where

CT '  = tr( ∕ H ) (4.19)

is the specific heat capacity of the system in a thermal state at temperature 
T ' ,  and k β is the Boltzmann constant.
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4.2 Thermodynamic evolution of 
energy-incoherent states

The formalism introduced so far is general and applies to any quantum 
state. However, we now focus on a specific class known as energy-incoherent 
states. These states are diagonal in the energy-eigenbasis and are invariant 
under time translations, making the covariance restriction irrelevant in 
their description. While this restriction may suggest that the "quantum 
component" is lost, it is important to note that this is fully justified in 
the "quasi-classical regime", where systems are quantised and have a 
small number of energy levels, but the decoherence is so strong that 
interference between different energy levels is negligible. Formally, this 
set of state is defined as follows.

Definition 4.2.1 (Energy-incoherent states). Let p  be a d -dimensional 
system described by a Hamiltonian H  = ∑  i E i ∖E j } ( E j |. I f  p  commutes 
with H  it follows that p  can be written as:

d
p  = ∑  p l ∖E l} ( E i ∖, (4.20)

1 =  1

where p j are the eigenvalues o f p , which coincide with the populations in 
the energy-eigenbasis. Furthermore, p  can be equivalently represented by a 
d -dimensional probability vector p o f its eigenvalues:

P = eig (P ) = (p i  , - , P d) (4.21)

As a result, the state space of energy-incoherent states is the (d -  1)- 
dimensional probability simplex A⅛ . If we recall from Chapter 3, stochas
tic matrices represent the most general evolution between probability 
distributions. Hence, this leads to the question of whether studying
thermodynamic transformations of energy-incoherent states allows one
to replace a thermal operation, i.e., a CPTP map, with a stochastic matrix
subject to certain constraints. This question is answered in the following
theorem, which links the existence of a thermal operation between in
coherent states to the existence of a Gibbs-preserving stochastic matrix
between the probability distributions representing these states.

Theorem 4.2.1. Let p  and σ  be quantum states commuting with the system 
Hamiltonian H , and γ  be its thermal Gibbs state with respect to the inverse 
temperature β . Denote their eigenvalues by p , q and γ , respectively. Then, 
there exists a thermal operation E , such that E  (p ) = σ , if  and only if  there 
exists a stochastic map A f such that

A  ̂γ  = γ  and Ap = q . (4.22)

The proof of this theorem can be found in the supplementary material of
Ref. [55] .

As discussed in the previous section, in classical thermodynamics, state
transformations are governed by the free energy. Specifically, one can 
transform an equilibrium state γ  into another equilibrium state γ ' , if and 
only if F (γ ) >  F (γ ' ) . However, when considering state transformations
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between different non-equilibrium states of a few-particle systems, the 
condition of decreasing free energy remains necessary but becomes 
insufficient.

Beyond the thermodynamic limit [56]

By going from the macroscopic (equilibrium) to the microscopic 
(nonequilibrium) realm, the traditional free energy function is re
placed by a family of quantum free energies and transitions are now 
governed by a family of second laws.

Define the free energies:

F a (p , γ ) := β D a (p∣∣γ ) -  β  log Z ,  (4.23)

with the Renyi divergences D a (p ∣∣γ ) given by1

F (P∣∣γ ) := sf n- 1)  lo g ∑  , (4.24)

where p ,∙ and y ,∙ are the eigenvalues of p  and γ , respectively.

If F a (p ,  γ ) ≥  F a (p ' , γ ) holds V n  ≥  0, then there exists a catalytic 
thermal operation that transforms p  into p ' .

In principle, determining the existence of a given thermal operation 
would require checking Eq. (4.23) for all a  ∈ 1R,. However, this is only 
necessary; it becomes sufficient only when catalysts are allowed, i.e., 
when one can introduce states that aid the transformation without being 
degraded in the process. Nevertheless, this problem can be tackled from 
the point of view of partial order relations. This allows one to characterise 
the set of possible transitions in an advantageous way as it reduces the 
problem to a finite list of conditions, namely n  simple 1-norm inequalities. 
In Section 3.3.2, we revisited this problem in a mathematical way via 
Theorem 3.3.6. This theorem establishes a link between the existence 
of a Gibbs-preserving matrix and the concept of thermomajorisation. 
Consequently, a direct corollary arises when we combine Theorem 3.3.6 
with Theorem .2.1:

1: The cases of a  ∈ { - ∞ , 0 , 1, ∞ }  are 
defined via suitable limits:

Corollary 4.2.2 (Thermal operations & Thermomajorisation). There 
exists a thermal operation mapping an incoherent state p into an incoherent 
state q i f  and only i f  p > β q .

β -swap - the thermodynamic permutation

If a Gibbs-preserving matrix exists that connects p  to q , we say that 
there is a thermal process between these two distributions.

Consider a qubit described by a Hamiltonian H  = E  ∖E ) (E ∣, and a 
thermal bath at inverse temperature β . Assuming that the qubit is in 
an energy incoherent state p = (p ,  1 -  p ), one can ask what is the set 
of achievable states from p  via thermal operations.

This question can be easily answered using thermomajorisation re
lations. The key point is that the set of achievable state is given
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by a convex combination between the initial state and the state

p π 12 = (1 -  p e  ~fiE, p e  ~Pe ) . Importantly, note that the state p π12 be
comes a swap when β  = 0. A direct swap of population between
two energy levels cannot be achieved by thermal operations since the 
associated transition matrix is not Gibbs-stochastic. However, such a
transformation that takes p  into p n n  is called β -swap and represents
the thermodynamic analogue of a swap [123]. In this example, such a 
transformation is accomplished by the following matrix:

(4.25)

The question raised in the above text box will be the central topic of the
next chapter. Specifically, we will complement such a question by also
asking the converse: What is the set of states that can be achieved from a
given initial state via thermal operations, and what is the set of states that are 
incomparable with the initial state?

Infinite temperature and the majorisation order

In the infinite temperature case, β  = 0, the thermal Gibbs state γ  is
described by a uniform distribution

1
η  = (1.........1) . (4.26)

Theorem 4.2.1 implies that a state p  can be mapped to q if and 
only if there exists a bistochastic matrix Λ0, such that Λ0^ = q , 
which transforms p  into q . In Chapter 3, we saw that there exists a 
bistochastic matrix Λ , Λ 0q  = q , mapping p  to q if and only if p >  q .

4.2.1 Single-shot, intermediate regime and asymptotic 
case

The scenario discussed so far is known as the single-shot regime, where
our sole objective is to ascertain when it is possible to transform one
state into another using thermal operations. Therefore, our interest lies 
in individual instances of the protocol, and nothing has been mentioned
about many runs, averages, or the asymptotic case. Thus, the natural
question consists of having access to arbitrarily many copies of the initial 
state and asking whether it is possible to transform instances of one state
to another with asymptotically vanishing error e :

(4.27)

The figure of merit when processing many subsystems is the conversion
rate R , defined as the ratio between the number of output and input 
states

M
R  = - .  (4.28)

This conversion rate quantifies the efficiency of generating output states
while processing multiple copies of the input state. Thus, we are interested
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in determining the optimal rate satisfying (4.27). It was found that, for 
initial and target energy-incoherent states, the rate is given by the ratio 
of non-equilibrium free energies [89]

(4.29)

where p  and q are the initial and target distributions. Hence, in this
regime, all transformations become fully reversible and, therefore, there 
is no dissipation [see Fig. 4.5a]. This result bears a striking resemblance
to that obtained in pure state entanglement theory, where the optimal 
interconversion rate is determined by the ratio of the entanglement
entropies of the initial and target states [126].

However, for finite N , this results no longer hold, and transformations
become irreversible. The intermediate regime has been thoroughly explored 
in the works [63, 100, 127], where there authors established a connection
between the extreme case of single-shot thermodynamics with N  = 1 and 
the asymptotic limit of N  →  ∞ . In particular, Eq. (4.29) gets a correction,
which, up to second order asymptotics, is given by

(4.30)

where Z v  1 is the inverse of the cumulative function of Rayleigh-normal 
distribution Z v  introduced in Ref. [128] with v  given by

(4.31)

and denotes equality up to terms of order o (1∕ y ∕N ) . See Fig. 4.5 for a
schematic representation of the asymptotic and intermediate regimes.

Such results enable the study of how thermodynamic cycles are influ
enced by irreversibility resulting from finite-size effects. For instance,
the performance of a heat engine is affected when one of the heat baths
it operates between is finite in size [100] . In Chapter 7, we will explore 
this regime and prove a relation between the amount of free energy 
dissipated in such processes and the free energy fluctuations of the initial 
state of the system.

Figure 4.5: Intermediate regime. (a) In the
asymptotic limit, N  →  ∞ , the optimal 
conversion rate R  from p ® N  (with eigen
values p ) to (with eigenvalues q̂ )
is equal to the inverse of the conversion
rate from σ to p . (b) Finite N  corrections
to conversion rates lead to irreversibility.
Adapted with permission from  Refer
ence [100]

4.3 Applications

The resource-theoretic approach allows us for a rigorous study of impor
tant thermodynamic protocols, such as work extraction, Landauer erasure, 
thermodynamically-free communication, among others. In this section, we
review the three mentioned ones.
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4.3.1 Work extraction

2: Let p (t) be a quantum system with 
Hamiltonian H ( f)  and average energy 
U (t) = tr[p ( t )H ( t ) ] .Onecandefine work
as

while the remaining energy is associated 
to heat,

Here we adopt the convention that work 
is extracted from the system, while heat 
is absorbed, which explains the presence 
of the minus sign.

3: The battery system can be described
by either a continuous Hamiltonian or
a Hamiltonian with a discrete spectrum,
as long as its energy differences align 
with the amount of work we intend to
extract.

4: The optimal W  is also called work o f
distillation.

Upon moving from the macroscopic to the microscopic regime, the 
concept of deterministically extracting work from a single system becomes 
blurred due to large fluctuations. While it has been demonstrated that the 
second law of thermodynamics, as a statement regarding average work, 
remains valid at the scale of a few quanta [55], the precise definition of 
work in this context remains an open question. Different definitions suit 
different contexts, and a universally applicable ruling for all scenarios is 
still lacking.

Generally, definitions of work rely on controlling and changing external 
parameters that determine the system's Hamiltonian. The standard 
dynamical approach is based on the assumption that the average energy 
of a system varies over time due to energy exchanges occurring in two 
distinct qualitative ways [33, 129]2: (i) work-like energy associated with 
the variation of external parameters that can be controlled, and (ii) heat
like energy associated with non-controlled energy exchanges between 
the system and its surroundings. This approach is particularly powerful 
for analysing the behaviour of quantum heat engines. A second, and 
complementary, approach is based on the assumption that work is a 
random variable, and a controlled Hamiltonian evolution is employed
to determine the statistics of work [130- 132]. The statistics of work play
a central role in the study of the nonequilibrium thermodynamics of 
small systems both classical and quantum. Indeed, the diversity of 
approaches for constructing the work distribution gives rise to different 
proposals [132- 135].

Here, we will adopt a different approach that distinguishes itself from the 
standard methods in two ways. First, we avoid using any external agents, 
which means Hamiltonian changes will not be employed. Second, instead 
of examining the average and higher moments of the work distribution, 
we concentrate on the so-called single-shot regime. This means our interest 
lies in individual instances of the protocol rather than repeated trials to 
characterise the statistics.

More precisely, work is defined in terms of a composite system under
going a thermal operation. The setup involves the main system and an
auxiliary system, a battery B , where energy can be reliably deposited
and extracted in a controlled manner. Without loss of generality, we
consider the battery to be a two-level system described by a Hamilto
nian ¾  with eigenstates ∣0} β  and ∣1} β  corresponding to energies 0 and 
Wext , respectively3. Assuming that the battery is initially prepared in the
ground state, the work extraction protocol is equivalent to the existence
of a thermal operation, whose effect consists of thermalising the main
system, while exciting the battery (see Fig. 4.6)

& (p  Θ ∣0X0∣b) -  γ  0  ∣1) ( 1∣b . (4.32)

The maximum amount of work that can be extracted from p  is determined 
by the maximum value of Wext4 for which the aforementioned thermal 
operation exists. If, Eq. (4.32) is strictly satisfied, then we say that we
have achieved a deterministic work extraction.
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Figure 4.6: Work extraction processes. Out-of-equilibrium system depicted by a collection of 
circles, each representing a distinct state and Hamiltonian, along with a battery system 
initially in the ground state. The composite system undergoes a thermal operation, which 
thermalises the main system while leaving the battery in an excited state. The extracted 
work is determined by the difference in energy of the battery.

No deterministic work extraction from mixed energy eigenstates

Consider a composite system composed of a two-level system pre
pared in an energy-incoherent state p = (p ,  1 -  p ) and a battery in
the ground state. Assuming that the two-level system and the battery
are described by the Hamiltonians H  = E  11)(11 and H g = W  |1}(1 |, 
respectively; we ask for the maximum value of W , such that the
following transformation is satisfied

p  ® (1, 0) →  γ  ® (0, 1) . (4.33)

To answer this question, we first need to plot the thermomajorisation
curves of the initial and target states. Next, note that both initial 
and target distributions reach a height of 1 at the x -axis positions 
x  = Z  (initial state) and x  = Z e  - ^ w  (target state), respectively. We can 
then observe that the optimal value of W occurs when Z  = Z e - ^ w . 
This equation reveals that this condition is satisfied when W  = 0. 
Therefore, in a single-shot regime, deterministic work extraction from 
a convex combination of energy-eigenstates is not possible. However,
notice that when either p  = 1 or p  = 0, deterministally one can extract 
W  = |  log Z  and W  = E  +  ∣ log Z , respectively.

If we relax the constraint that work must be extracted deterministically
and instead allow for a probability of failure e , we enter the scenario 
known as e -deterministic work extraction. The failure is modeled by assum
ing that the battery ends up in a state e  close to the excited state, i.e., 
p β  = (e , 1 -  e ) .

While the main focus of the discussion is on a single subsystem, in 
Chapter 7, we will explore the scenario of extracting work from an initial
system composed of asymptotically many non-interacting subsystems.
These subsystems can either be energy-incoherent and non-identical, 
existing in different states with different Hamiltonians, or they can be 
pure and identical. In particular, this scenario allows one to treat the 
battery system as a part of the main system by selecting one specific 
subsystem to be in a pure ground state (see Fig. 4.6).

4.3.2 Information erasure

The connection between information and thermodynamics is as old as the
thermodynamic theory itself, stretching back to the thought experiment
known as Maxwell's Demon to his exorcism. At the core of this connection
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Figure 4.7: Information erasure. The N  bits of information to be erased are represented by 
N  subsystems in a state p N with a trivial Hamiltonian H n  . The process is performed by 
attaching a battery system B in an excited state ∣1>s  with energy W ^ ,  which measures 

the energetic cost of erasure. The erasure process resets the state p N to a fixed state ∣0>θn,
and de-excites the battery system.

lies the principle that processing information must adhere to the laws of 
thermodynamics. More precisely, erasing information has a fundamental
energetic cost of 1∕β  log 2.

Similarly to the case of work extraction, the erasure process can also be 
formulated as a particular type of thermodynamic process. The setting 
comprises a bit of information, represented by a two-level system in a
state p  with trivial Hamiltonian H  = 0, and a two-level battery system 
initially in an excited state ∣1> b of energy Wcost, which measures the 
energetic cost of erasure. The processes involves resetting the state p  to a 
fixed state ∣0>, while investing an amount of work Wcost. This is equivalent 
to the existence of the following thermal processes:

E  (p  Θ ∣ 1><1 ∣ b ) = ∣ 0><0 |® | 0><0 ∣ b , (4.34)

with the initial and target Hamiltonians being identical. If one wants 
to erase N  bits of information, then the initial state is replaced by N  

two-level systems. The problem becomes more interesting when we allow 
a probability of failure e  and ask about the contribution arising from
finite-size effects in the erasure processes. This problem will be tackle in 
Chapter 7.

Landauer's principle

Consider a composite system composed of a two-level system pre
pared in a mixed state p = (1/2, 1/2) and a battery in the excited state.
Assuming that the two-level system and the battery are described by
the Hamiltonians H  = 0 and H g = Wcost ∣ 1><1∣, respectively; we ask 
for the maximum value of W , such that the following transformation
is satisfied

p  ® (0 , 1) → (1, 0) θ (1, 0) . (4.35)

As before, this question is answered by drawing the thermomajorisa-
tion curves of the initial and target state. Then, by comparing the x -axis
positions for when both curves reach a height of 1, we conclude that
the optimal value of W , or the work cost, is given by Wcost = 1∕β  log 2,
which is precisely the fundamental amount required for erasing one
bit of information.

4.3.3 Thermodynamically-free communication

Since thermodynamics is closely linked with information processing, one
can also study thermodynamic aspects of communication. A traditional
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communication scenario in which Alice wants to encode and transmit
classical information to Bob over a quantum channel consists of the
following three steps [136]. First, she encodes a message m  ∈ { 1, . . . ,  M } 
by preparing a quantum system in a state p m . Then, she sends it to
Bob via a noisy quantum channel N . Finally, Bob decodes the original
message by performing an optimal measurement on N (p m) . Crucially, in
this standard scenario, both Alice and Bob are completely unconstrained, 
meaning that they can employ all encodings and decodings for free, and 
the only thing beyond their control is the noisy channel N .

Recently, a modification of this scenario was introduced that allows one 
to quantify the thermodynamic cost of communication [137, 138]. More
precisely, it is assumed for simplicity that Alice and Bob are connected via
a noiseless channel, and Bob's decoding is still unconstrained. However,
Alice is constrained to thermodynamically-free encodings, meaning that 
encoded states p m can only arise from thermal operations acting on 
a given initial state p , interpreted as an information carrier. Physically,
this means that Alice obeys the second law of thermodynamics, in the
sense that the encoding channel is constrained to use no thermodynamic 
resources other than the ones initially present in the information carrier p .
We illustrate this process in Fig. 4.8.

Figure 4.8: Thermodynamically-free encod
ing. The thermal encoding of informa
tion can be captured by a  thermody
namic process by considering N  inde
pendent subsystems in a state p N and 
with a Hamiltonian H n  as an informa
tion carrier. The sender encodes a m es
sage m  ∈ { 1, . . . ,  M }  into it by applying 
a thermal operation ⅛  that transforms 
p N into mutually (almost) distinguish
able states, and the receiver decodes the
original message by performing a mea

surement on (p N) .

Now, the central question is: what is the optimal number of messages that can
be encoded into p  in a thermodynamically-free way, so that the average decoding 
error is smaller than ? In Chapter 7, we will investigate the case when the 
information carrier is given by N  independent systems in a state pN and 
with a Hamiltonian H n , as specified in Eq. (4.4). Then, instead of asking 
for the optimal number of messages M (p N , e a ), we can equivalently ask
for the optimal encoding rate [138]:

(4.36)

4.4 The open quantum system approach to 
quantum thermodynamics

Let us now contrast the resource-theoretic framework with the standard 
dynamical approach to quantum thermodynamics [33]. Specifically, this 
approach describes the continuous evolution of a quantum system over 
time using a differential equation known as a Markovian master equation. 
Markovianity implies that no memory effects of the bath are taken into 
account. While memory effects can always be present in principle, several 
assumptions are made when modelling the joint system-bath dynamics. 
These assumptions, such as weak coupling, large bath size, and quickly 
decaying correlations, ensure the system's behaviour is described by a 
Lindblad master equation [68, 69, 139]

(4.37)
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In the above, [∙, ∙] denotes the commutator and L  is the Lindbladian
with the following general form [52]:

(4.38)

with { ∙ , ∙} denoting the anticommutator, L i (t ) being time-dependent 
jump operators, and r,∙(t ) ≥  0 being time-dependent non-negative jump 
rates. While a general Lindbladian only requires the rates r ,∙ to be non
negative, Lindbladians arising from the interaction of a quantum system 
with a large heat bath have two standard properties [33, 52]:

(P1) Steady state. The Gibbs thermal state of the system,

(4.39)

is a stationary solution of the dynamics, i.e.,

(4.40)

(P2) Covariance. The Lindbladian L  commutes with the generator of 
the Hamiltonian dynamics H  at all times t , i.e.,

(4.41)

Quantum dynamics, as governed by master equations of the form in
Eq. (4.37) and satisfying to properties (P1) and (P2), are termed Markovian
thermal processes [59]. They can be formally defined as:

Definition 4.4.1 (Markovian thermal processes). A channel is a Marko
vian thermal process (MTP) if it results from integrating a Markovian master
equation, Eq. (4.37), between time 0 and t f  ∈ [0, + ∞ ] , where the Lindbladian 
L  satisfies properties (P1)-(P2).

Typically, such an approach is model-dependent. For instance, one might 
assume the dynamics of a quantum dot coupled to a fermionic bath [140], 
or a qubit interacting with an electromagnetic field [141]. The primary goal 
consists of deriving a specific master equation and subsequently solving
for the associated dynamics. However, as before, we can ask whether
it is possible to characterise the necessary and sufficient conditions for
the existence of a Markovian thermal process between specific initial 
and final energy distributions of the system in a model-independent 
way. This problem was recently tackled in Ref. [59, 142] . The authors 
introduced a hybrid framework that leverages the information theory
tools discussed in this chapter, complementing the toolkit offered by the 
master equation formalism. Remarkably, it was found that the existence
of a Markovian thermal process is linked to the notion of continuous 
thermomajorisation via the following theorem [59]:

Theorem 4.4.1 (Thermodynamic interconversion). There exists a Marko
vian thermal process mapping p (0) into p (t f ) i f  and only i f  p continously
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thermomajorises p (t f ) :

MTP
p - →  p (tf ) ⇒  P > β  P (l f ) . (4.42)

The proof of this theorem can found in the Appendix A of Ref. [59]. 
As a consequence, continuous thermomajorisation provides a complete
set of constraints for the evolution of populations within the standard
Markovian master equations approach. What is more, if p p (t f ),
there exists an universal set of controls that allows one to devise a 
thermalisation process that drives the system to a final target state p (t f ) . 
These are a set of thermalisations acting only on two energy levels (i ,  f)
and is represented by the reset Markovian master equation

(4.43)

whose solution describes an exponential relaxation to equilibrium:

p ( i>) (t ) = e - tl τ p ( i>) (0) +  [p i (0) +  p j (0)](1 -  e - t ∕ τ )γ ( i>) . (4.44)

where p (1f ) (t ) := (p  ̂(t ) , p j (t )). The equation Eq. (4.44) can be represented
in the form of a matrix equation as:

p (ij)(t ) = t ( i p (λ t )p ( Y ) (0) , (4.45)

with λ t = 1 -  e ~t∣τ and

Finally, the so-called elementary thermalisations are a universal set of
thermalisation controls:

(4.46)

Theorem 4.4.2 (Universality of elementary thermalizations). There 
exists a Markovian thermal process mapping p (0) into p (t f ) i f  only i f  there
exists a finite sequence of elementary thermalisations such that

p (tf ) = T ( if ’f ) (Λf ) . . .  T (i1 -ω (λ 1 )p (0) . (4.47)

For the proof, see Appendix A of Ref. [59]. This result significantly 
simplifies the set of controls needed to generate the transformations
achievable by the most general Markovian thermal process.

4.5 Concluding remarks

In thischapter,we introduced the resource-theoretic frameworkforstudy-
ing thermodynamic transformations of quantum systems. We began by
defining the set of thermal operations, which encapsulate all possible 
transformations that can occur without requiring resources beyond a 
single heat bath. Focusing specifically on energy-incoherent states, we 
identified the necessary and sufficient conditions that determine the 
existence of thermal operations between a pair of states. Intriguingly, 
the rules describing which state transformations are possible under
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thermal operations can be expressed as a partial-order relation between 
probability vectors corresponding to the initial and final states. In the 
infinite-temperature limit, these rules are captured by the majorisation 
relation, while in the finite temperature scenario, they are represented by 
thermomajorisation. Additionally, we demonstrated how this framework 
can be employed to analyse thermodynamic protocols such as work 
extraction, information erasure, and thermodynamically-free communi
cation. We wrapped up the chapter by delving into a hybrid framework 
linking the resource-theoretic approach with the standard dynamical 
approach to quantum thermodynamics. Notably, the conditions needed 
for the existence of a Markovian thermal process that between a given 
initial and final energy distributions of the system can also be framed 
using the notion of partial-order. In this case, the concept continuous 
thermomajorisation between these states. Even more striking is the fact 
that this framework is constructive, returning explicit protocols for real
ising any possible Markovian transformation. These protocols are built 
upon elementary thermalisations, each acting on only two energy levels 
of the system, which have been proven to be universal controls.
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5Geometric structure of thermal 
cones

Thermodynamic evolution of physical systems obeys a fundamental 
asymmetry imposed by nature. Known as the thermodynamic arrow 
of time [143], it is a direct manifestation of the second law of thermo
dynamics, which states that the entropy of an isolated system cannot 
decrease [1, 144]. In other words, the thermodynamic evolution inherently 
distinguishes the past from the future: systems spontaneously evolve to 
future equilibrium states, but do not spontaneously evolve away from 
them. Even though recognition of the thermodynamic arrow of time is an 
old discussion [145, 146], it still raises deep questions relevant both to phi
losophy and the foundations of physics [147, 148]. Despite many attempts, 
the full understanding of the time asymmetry in thermodynamics seems 
to be still beyond our reach.

The theoretical toolkit discussed in Chapter 4 offers a comprehensive 
approach that allows us to reexamine previous inquiries, such as the 
nature of the thermodynamic arrow of time. An investigation from the 
viewpoint of order theory was initially performed in Ref. [149], where this 
issue was explored. However, the analysis mainly focused on structural 
differences between classical and quantum theories in contrast to the 
geometric aspects of thermal cones that we investigate here.

The aim of this chapter is to characterise the thermodynamic arrow of time 
by investigating the allowed transformations between energy-incoherent 
states that arise from the most general energy-conserving interaction 
between the system and a thermal bath. These transformations encode the 
structure of the thermodynamic arrow of time by telling us which states 
can be reached from a given state, which we refer to as the present state, in 
accordance with the laws of thermodynamics. Under these constraints, 
the state space can then be naturally decomposed into three parts: the set 
of states to which the present state can evolve is called the future thermal 
cone; the set of states that can evolve to the present state is called the 
past thermal cone; while states that are neither in the past nor the future 
thermal cone form the incomparable region.

While studying the future thermal cone has yielded substantial in
sights [150- 152], the explicit characterisation of the incomparable region
and the past thermal cone has not been performed. The core of this 
chapter relies on two main theorems that address this gap. The first 
theorem provides a geometric characterisation of the past majorisation 
cone, which is the set of probability distributions that majorises a given 
distribution. This, together with the incomparable region and future 
thermal cone, fully specifies the time-like ordering in the probability 
simplex in the limit of infinite temperature. The second result generalises 
the first one to the case of finite temperatures.

Earlier works have established that the future (thermal) cone is convex [78, 
150]. The results presented here extend this knowledge by demonstrating
that the past (thermal) cone of a d-dimensional system can always be 
decomposed into d ! convex parts. Furthermore, in the zero-temperature
limit, only one of these convex parts retains a non-zero volume, resulting
in the entire past thermal cone becoming convex. Additionally, new
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thermodynamic monotones, based on the volume of the thermal cones, 
are introduced.

The results discussed here can also be seen as an extension of the famous
Hardy-Littlewood-Pólya theorem [81], as they specify the past cone and 
the incomparable region in addition to the previously studied future 
cone. Therefore, they can also be employed to study other majorisation- 
based resource theories, such as the theory of entanglement [86] or 
coherence [90, 153]. Concerning local operations, an analogy between 
special relativity and the set of pure states of bipartite systems was 
previously made in Ref. [154], where the authors correspondingly divided 
the state space into three parts. Here, we consider a more general partial- 
order structure, the thermomajorisation order, which generalises the 
previous and recovers it in the limit of infinite temperature.

This chapter starts by stating the main results concerning the construc
tion of majorisation cones and discussing their interpretation within the 
thermodynamic setting, and in other majorisation-based theories. This 
construction is also generalised for probabilistic transformations. Next, 
the majorisation cones results are generalised to thermal cones, generated 
by thermomajorisation relation, where we also introduce the tool of 
embedding lattice, instrumental for the proof of the second main result. 
Then, we introduce thermodynamic monotones given by the volumes 
of the past and future thermal cone, discuss their intuitive operational 
interpretation and describe their properties. We also comment on the dif
ferent natures of future and past cones for entanglement transformations. 
The technical derivation of the main results can be found in Section 5.5.

5.1 Majorisation cones

Figure 5.1: Thermal cones. The thermody
namic arrow of time induces a time-like 
ordering that can be decomposed into 
past, incomparable, and future regions

The reachability of states under bistochastic matrices can be studied by 
introducing the notion of majorisation cones, defined as follows:

Definition 5.1.1 (Majorisation cones). The set of states that a probability
vector p can be mapped to by bistochastic matrices is called the future cone 
T + (p ). The set o f states that can be mapped to p by bistochastic matrices is 
called the past cone T - (p ). The set o f states that are neither in the past nor 
in the future cone o f p is called the incomparable region T (p ).

Definition 5.1.1 provides a framework for analysing the thermodynamics 
of energy-incoherent states in the infinite-temperature limit. Additionally, 
it allows us to study a broader class of state transformations that are 
governed by majorisation relations, such as those that arise in the resource 
theories of entanglement [86] or coherence [90, 153, 155, 156]. We discuss 
these more general settings in detail in Sec. 5.1.1; however, for now, we 
will focus on thermodynamic transformations.

The future cone can be characterised using Birkhoff's Theorem 3.2.1,
which states that any bistochastic matrix can be expressed as a convex
combination of permutation matrices. Since there are dl permutations in 
¾ , the set of d ×  d  bistochastic matrices forms a convex polytope with dl
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vertices. Combining this result with Theorem 3.3.1, we obtain the future
cone of p :

Corollary 5.1.1 (Future cone). For a d -dimensional probability vector p ,
its future cone is given by

T + (p ) = conv [{∏P ,  S cι 3 π →  Π } ] , (5.1)

where Π  denotes a permutation matrix corresponding to the permutation π  

with d elements, and conv[S] the convex hull o f the set S .
Figure 5.2: Achievability. Future cone for
a state with population p =  (0 .7 , 0 .2 , 0 .1) .
Extreme points corresponds to all per
mutations of p .

The above corollary implies that the future cone of p  is a convex set, 
with all distributions lying in T+ (p ) being majorised by p  (see Fig. 5.2 for 
an example considering a three-level system). Since the d-dimensional
sharp distribution, (0 , . . . ,  1 , . . ,  0), majorises all probability distributions, 
its future cone is the entire probability simplex, which we will denote by
Δ√ .

If there is no transformation mapping p  into q nor q into p , we say that 
these two states are incomparable. The incomparable region can be charac
terised by incorporating into the analysis the concept of quasi-probability 
distributions, which are defined by relaxing the non-negativity condition
on the entries of a normalised probability distribution. The following re
sult, the proof of which is employing the lattice structure of majorisation 
order and can be found in Section 5.5, specifies the incomparable region
of p .

Lemma 5.1.2 (Incomparable region). For a d -dimensional probability 
distribution p = (p ↑ , . . . ,  p j ), consider the quasi-probability distributions t (n ) 

constructed for  each n  ∈ { 1, . . . ,  d  } ,

See Figs. 5.3a and 5.3b for an example illustrating the incomparable
region for a three-level system.

Figure 5.3: Incomparability. (a) Incompa
rable region for a state with population
p =  (0 .7 , 0 .2 , 0 .1) ,w herethetangentvec-
tors are highlighted in the first chamber. 
In (b), we illustrate both the future and 
incomparable regions.

We will refer to the quasi-probability distributions t (n ) as tangent vec
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tors. The intuition behind this name and the importance of t can 
be explained by noticing that any convex function g (x ) lies fully un
der its tangent at any point y , denoted as t y (x ) ≥  g (x ), with equality 
guaranteed only for t y (y ) = g (y ) . It follows from the definition of t (n ) 

that its majorisation curve f t ( π) (x ) is parallel to the π -th linear piece 
of fp  (x ) for x  ∈ [(π -  T)∕d , n / d ], and the first and last elements of 
t (n) guarantee tangency and normalisation. Finally, since the adjacent 
linear fragments of f p (x ) share the elbows of the function, the conse
quent tangent vectors t ( n ) , t ( ” + 1) are both tangent at a selected elbow, 
f p  (n / d ) = f t { n) (n ∕d ) = f t  ( π + 1) (rc∕ d) . Therefore, any convex combination 
of the form a t (n) +  (1 -  a )t ( n + 1)  will be “tangent” at the π -th elbow of the 
p  majorisation curve. The fact that t (n) may be a quasi-probability distri
bution does not pose a problem, since this vector can be projected back
onto the probability simplex. The projected vector t (n) will be denoted 
by t p”ro j, and can be obtained by successively applying the map

(5.6)

to pairs of entries of t (n) going from m  = d  to m  = 2. In each step, the
map either zeros the second component by shifting its value to the first
one or, if the second component is non-negative, it leaves them both 
unperturbed. Geometrically, the state is shifted along the edges of the 
future cone of t (n) and every time it hits a plane defining one of the faces 
of the probability simplex A⅛, a new direction is selected, until the state 
is composed exclusively of non-negative entries.

Figure 5.4: Majorisation cones. Past 
region for a state w ith population
p  = (0 .7 , 0 .2 , 0 .1) .

Using Lemma 5.1.2, we can now prove the following theorem that 
specifies the past cone.

Theorem 5.1.3 (Past cone). The past cone o f p is given by

T - (p ) = ∆ r f\ int(T ) . (5.7)

Proof. One only needs to use the fact that

T - (p ) = ∆ r f\  (3 0 (p ) U  T + (p )) , (5.8)

and employ Lemma 5.1.2 to replace 3 g (p ) in the above with Eq. (5.5). □

Let us make a few comments on the above results. First, note that the 
incomparable region arises only for d ≥  3. This can be easily deduced 
from Lemma 5.1.2, as for d = 2 the two extreme points, t (1) and t (2) , are 
precisely the initial state p . Second, the future thermal cone is symmetric 
with respect to the maximally mixed distribution η , and consequently, the
incomparable and past cones also exhibit a particular symmetry around 
this point. As we shall see, this symmetry is lost when we go beyond the 
limit of infinite temperature. Third, although the past cone is not convex
as a whole, it is convex when restricted to any single Weyl chamber. 
Therefore, we may note that the tangent vectors t (n) provide the extreme
points of the past not only from the viewpoint of a single-chamber but
also to the entire probability simplex. This can be understood by noting 
that t (n) are located at the boundary between the incomparable and the 
past cone, and by symmetry, it applies to all their permuted versions.
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Figure 5.5: Majorisation cones and Weyl chambers. (a) Probability simplex Δ3 and a state 
p =  (0 .6 , 0 .3 , 0 .1) represented by a black dot •  together with its majorisation cones. The 
division of Δ3 into different Weyl chambers is indicated by dashed lines with the central 
state η =  (1/3 , 1/3 , 1/3) denoted by a black star ★. (b) The past cone of a state p restricted 
to a given Weyl chamber is convex with the extreme points given by t (n )  from  Eq. (5.2) 
and the sharp state. (c) The causal structure induced by bistochastic matrices (i.e., thermal 
operations in the infinite temperature limit) in a given Weyl chamber.

As a consequence, the past is constructed from d l copies of the past in 
the canonical Weyl chamber, each copy transformed according to the 
corresponding permutation π  (see Fig. 5.5a, b). Finally, one can make an 
analogy to special relativity with bistochastic matrices imposing a causal 
structure in the probability simplex Δ ^ . There exists a “light cone” for 
each point in Δ ^ , which divides the space into past, incomparable, and 
future regions (see Fig. 5.5c).

Constructing the incomparable region

To gain geometric intuition for interpreting Lemma 5.1.2, we consider 
a three-level system and construct its incomparable region.

Let p = (0 .7, 0 .2 , 0 .1) be the population of the initial state. Then, 
Lemma (5.1.2) implies the existence of three different quasi-probability 
distributions t (n) , namely t (1) = (0 .7, 0 .7, - 0 .4), t (2) = (0 .7, 0 .2, 0 .1), 
and t (3) = (0 .8, 0 .1, 0 .1). The next step is to evaluate Eq. (5.4), i.e., cal
culate the future thermal cones for each quasi-probability distribution 
individually, and then take the convex union of all the cones. This 
process is illustrated below.

To obtain the incomparable region, we first take the set difference 
between the interior o ∏ ' and the future thermal cone of p
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The next step to compute Eq. (5.5) is to intersect with . Note that this
procedure eliminates improper probability distributions. By doing so, 
we obtain the incomparable region, which is illustrated in Fig. 5.3a.

(b)

(a)

Figure 5.6: Hasse diagrams. Graphical rep
resentation of the partially ordered set
formed by the extreme points of the past 
cone in the probability simplex A⅛ . Each
arrow indicates that one of the elements 
precedes the other in the majorisation
ordering. (a) Diagram for d  = 3. (b) Di
agram for d = 4. Note that any convex 
combination between tp )0j and £ ' 3 ' , here

2,3
denoted by t⅛' , results in an incom-

1
parable vector with respect to ^prθj and

t  (4) .

The central idea behind Lemma 5.1.2 and Theorem 5.1.3 can be better 
understood through a visualisation using partial-order diagrams. To 
illustrate the principles of such diagrams, we will first focus on the 
special case of a three-level system. In this case, the past cone has three
non-trivial extreme points: t (1) , t (2) and t (3) . Furthermore, as shown in 
Fig. 5.6a, these extreme points satisfy the following partial-order relation: 
the sharp state s i  majorises both t (1) and t (3) , and these two vectors 
majorise the initial state p = t (2) . As it was proved in Lemma 5.1.2, the 
union of the future cones of these extreme points provides us, after 
subtracting the future of the vector p , with the incomparable region 
of p . In the particular case of d = 3 since t (1) , t (3) >  t (2) , we find that 
conv[T+ (f (1) ), T + (t (2) )] = T + (t (1) ) and similarly for t (3) . However, it is 
important to note the fact that t (1) and t (3) are incomparable, and in turn, 
their respective future cones after subtracting future of p  characterise 
disjoint parts of the incomparable region. Finally, the tangent vector t (2) 

reduces to the original probability vector, t (2) = p , only for d = 3, and 
this fact is fully understood from the construction of the t ( n )-vectors (see
Section 5.5).

It is evident from Lemma 5.1.2 that each pair of tangent vectors (t (n) , t ( ” + 1) )
characterises a given part of the incomparable region. However, notice
that the futures of the extreme points considered one by one do not 
give the full description of the incomparable region -  one needs to 
consider their convex hulls to fill in the gaps. This particular feature 
of the construction can be demonstrated by considering the case of 
d = 4. Observe that in this case, we have a set of four tangent vectors 
t (n ) with n  ∈ { 1, 2, 3 , 4 } . Straightforward calculation shows that t (1) 

majorises t (2) and t (4) majorises t (3) , therefore we find certain simplifi
cation, namely conv[T+ (f (1) ), T + (t (2) )] = T + (t (1) ) and similarly for t (3) 

and t (4) . Nevertheless, t (1) is incomparable to t (4) ; similarly t (2) belongs 
to the incomparable region of t (3) [see Fig. 5.6b]. From this we find 
the non-inclusions T + (t (1) ) ⊄  T + (t (4) ) and T + (t (4) ) ⊄  T + (t (1) ), similarly 
T + (t (2) ) ⊄  T + (t (3) ) and T + (t (3) ) ⊄  T + (t (2) ) . Naively, one may be led to 
a conclusion that the incomparable region can be characterised by the 
future cones of t (1) and t (4) alone. However, any convex combination 
λ t (2) +  (1 -  λ )t (3) ≡ t ^2,3) results in an incomparable vector t ^2,3) ∈ T (t ( ; ) ) 
for i = 1, 2 , 3, 4 and 0 <  Λ  <  1 [see Fig. 5.6c], and hence, in a “new”
fragment of the incomparable region. In order to account for the entire

2 , 3incomparable region one must take the union of all future cones of t y  ) 

for Λ  ∈ [0, 1] . This corresponds to the convex hull of the future cones* 

T + (t (2) ) and T + (t (3) ) . Furthermore, the construction is limited only to 
convex combinations of futures for consecutive tangent vectors since 
mixtures of two non-successive ones, for instance t (1) and t (4) , do not give
any additions to the incomparable region. Such combinations belong to
the past cone of p  as every point of λ t (1) +  (1 -  λ )t (4) would majorise p .

* Geometrically, the mixture of t (2) and t (3) corresponds to the edge that connects these
two points.
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5.1.1 Links to other resource theories

The two well-known examples of majorisation-based resource theories, 
where our results are also applicable, include the resource theories of 
entanglement and coherence. These are defined via the appropriate sets 
of free operations and free states: local operations and classical commu
nication (LOCC) and separable states in entanglement theory [157], and 
incoherent operations (IO) and incoherent states in coherence theory [153]. 
Within each of these theories, there exists a representation of quantum 
states via probability distributions that is relevant for formulating state
interconversion conditions under free operations. In entanglement theory,
a pure bipartite state p  = ∣Ψ X Ψ ∣ can be written in terms of the Schmidt 
decomposition given by ∣Ψ } =  ∑ ,∙ α ,∙ ∣ψ,∙, , and represented by a prob
ability vector p  with p ,∙ = ∣α ,∙∣2. Then, Nielsen's theorem [86] states that 
an initial state p  can be transformed under LOCC into a target state q 
if and only if p <  q . Similarly, in the resource theory of coherence with 
respect to a fixed basis { ∣ i } } , one can represent a pure state p  = ∣ψ Xψ ∣ 
by a probability vector p  with p ,∙ = ∖( i ∣ψ }∣2. Then, a given initial state 
p  can be transformed into q via incoherent operations if and only if 
p  <  ⅛ [ ].

Therefore, we observe that the partial order emerging in the two cases
is precisely the opposite to the thermodynamic order in the infinite
temperature limit (for more details see Ref. [158]). Consequently, the ther
modynamic past and future become the future and past for entanglement 
and coherence, while the incomparable region remains unchanged (see
Fig. 5.7). Note that, for entanglement and coherence, sharp states s are in 
the future cone of any given state, while for thermodynamics (at β  = 0), 
they are in the past. The flat distribution η  is in the past of any state in
entanglement and coherence theories, whereas in thermodynamics it is 
in the future.

One can make a general remark concerning resource monotones, applying 
to the entanglement, coherence and thermodynamic scenarios alike. 
Consider an entangled state ∣ψ} ∈ H f√  ® H j√  with the associated Schmidt 
coefficients p  and concurrence cC5(∣ψ)) as an example of a resource 
monotone [ 59 ]. If another state ∣ψ̂  with Schmidt coefficients q is in the 
future cone of ∣ψ }, q ∈ T + (p ), then tC (∣ψ }) ≤  tC (∣ψ }). Otherwise, if it lies 
in its past cone, q ∈ T - (p') we know that tC ( ∣ψ}) ≥  tC (∣ψ }) . However, if 
the two states are incomparable, q ∈ T (p ), nothing can be said about
the relation between both concurrences.

Figure 5.7: Achiviebility under LOCC . 
Entanglement cone in the simplex of 
the Schmidt coefficients of a 3 ×  3  sys
tem . Conversely to thermodynamics, 
the past of entanglement transforma
tions is the thermodynamic future and 
vice-versa. The black dot •  indicates 
the Schmidt vector of the initial state
p =  (0 .7 , 0 .2 , 0 .1) , whereas the black star 
★ represents the maximally entangled 
state η  = (1/3 , 1/3 , 1/ 3)

5.1.2 Probabilistic majorisation cones

Finally, it should be observed that the notion of majorisation cones, as pre
sented until now, deals with deterministic transformations. However, this
approach can be extended to probabilistic transformations using Vidal's
criterion for entanglement [101, 160] and coherence transformations [161] 
under LOCC and IO, respectively. In the case of probabilistic transforma
tions of bipartite entangled states under LOCC, this is captured by the 
following theorem [160].
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Figure 5.8: Probabilistic majorisation conesfor d  = 3. For a three-level system with a state given by p =  (0 .7 , 0 .2 , 0 .1) represented by a black 
dot •  and a maximally entangled state η  =  (1/3 , 1/ 3 , 1/3) represented by a black star ★, we plot its probabilistic majorisation cone for
probabilities of transformation P decreasing from 1 to 0 .5 w ith 0 .125 steps (a-e), respectively. Observe that, for P = 1, we recover the
structure of the standard majorisation cones, while as P  decreases the interconvertible region T → (p , P ) expands and the incomparable 
region T ⅛(p , P ) shrinks, disappearing altogether between panel (d) and (e)

Theorem 5.1.4. Consider two bipartite pure states ∣ψ) and , whose 
Schmidt decompositions are described by probability vectors p and q , respec
tively. The maximal transformation probability from  ∣ψ) to ∣A  under LOCC
is given by

(5.9)

In Section 5.5.3, we discuss the extension of majorisation cones to prob
abilistic ones, denoted as T (p ; P ), with i ∈ { - , 0 , + }  and P  being the
minimal probability of transformation. Here we will limit ourselves
to a brief qualitative discussion about the behaviour of the probabilis
tic majorisation cones as the transformation probability changes from 
P (∙, ∙) = 1 to P (∙, ∙) <  1 (see Fig. 5.8). Note that the only common 
points of the future and past for P  = 1 are the current state of the 
system p  and its permutations. Conversely, for P  <  1 this is not the 
only case; consequently, we may define the interconvertible region of p 
at the probability level P  as the intersection between the probabilistic 
past and probabilistic future, T<→ (p , P ) ≡ T + (p , P ) ∩ T - (p , P ) . This 
region is non-empty for every P  <  1. It is easily shown that the future
and the past cones grow as the probability of transformation decreases,
T+ (p , P ' ) c  T + (p , P ) and T - (p , P ' ) c  T - (p , P ) for P '  >  P . Therefore,
the only region that decreases together with P  is the incomparable region,
3 0 (p , P ' ) ⊃ 3 0 (p , P ) . Interestingly, for every state p , we observe that 
there is a critical value P * , at which no two states are incomparable, i.e., 
3 0 (p , P ) = 0 [see Figs. 5.8a, e]. Analogous results hold in the context of
coherence, as Theorem 5.1.4 has its counterpart when considering pure
state transformations under IO operations [161, 162].

Finally, it is worth mentioning, that a criterion similar to the Vidal's
criterion was established for probabilistic transformation in the context of 
thermal operations [163]. In this case, the construction of the probabilistic
cones for majorisation generalises directly to the thermomajorisation 
by using the construction of thermomajorisation cones which we will 
introduce in the next section.
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5.2 Thermal cones

Let us turn our attention to a more general scenario, assuming that
the temperature is finite, β  >  0. In this case, the reachability of energy- 
incoherent states under Gibbs-preserving matrices can be studied by
introducing the notion of thermal cones, defined as follows:

Definition 5.2.1 (Thermal cones). The set of states that an energy- 
incoherent state p can be mapped into by Gibbs-preserving matrices isft
called the future thermal cone T +  (p ). Similarly, the set of states that can be 
mapped to p by Gibbs-preserving matrices is called the past thermal coneft
T -  (p ) . Finally, the set o f states that are neither in the past nor in the futureft
o f p is called the incomparable thermal region T f  (p ).

Despite apparent similarities, the case of β  >  0 turns out to be signif
icantly harder than β  = 0. Difficulties stem mostly from a simple fact 
demonstrated in Ref. [149] -  even though thermomajorisation forms 
a lattice in each β -order, it does not provide a common lattice for the 
entire probability simplex. Thus, before extending Lemma 5.1.2 and
Theorem 5.1.3 to the thermal setting (proofs of which rely heavily on the
existence of a join), we will introduce an embedding lattice -  a structure 
which encompasses thermomajorisation order as its subset -  and we
will demonstrate operations shifting to and from the newly introduced 
picture.

5.2.1 Embedding lattice

To define a ^ -dependent embedding lTO of the simplex into a subspace 
A™ C  A2d - ι , illustrated by a graphical example in Fig. 5.9, we first 
introduce the vector Γto with entries given by all possible partial sums of
the Gibbs distribution,

(5.10)

with 2 { 1, ' " , l i }  denoting the power set of d  indices. Moreover, we enforce 
that it is ordered non-decreasingly, i.e., for i >  j  we have Γ^i ≥  Γto. Then, 

the embedded probability vector, p TO ■ = TO(p ), is defined by

ι>TO =  √  (r TO) -  f '  (r ” i ) , (5.11)

ft
where ∕ pp is the thermomajorisation curve of p .

Within this embedding, the thermomajorisation indeed proves to be
almost-standard majorisation relation between the embedded distribu
tions,

(5.12)
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Figure 5.9: Embedded majorisation curve. Embedding O  : →  Δ 2 ^  1 of d -dimensional probability distribution p (here d = 3) into a
2d — 1 = 7-dimensional space is most easily understood by noting that each thermomajorisation curve (left) has elbows corresponding to 
a subset of on the horizontal axis. The embedding includes all entries of by subdividing the Lorenz curve into 2d — 1 fragments. 
Conversely, the projection tyπp  corresponds to selecting only a subset of elbows that correspond to a selected order, in this case the 
original order π p . In the x -axes we used the shorthand notation y z∙y = γ ∣ +  γ j .

where the last symbol >-j,∣l denotes the majorisation variant related to
the embedding lattice. Finally, we note that the only deviation from the 
standard majorisation lies in the convexity condition in the embedding
space, which is imposed not on the probabilities themselves, but on
their rescaled versions,

(5.13)

with scaling factors directly related to the embedded majorisation curve of
the Gibbs state y ™ . This ordering should be compared (but not confused) 
with the ^ -ordering introduced in Eq. (3.28), pointing to a relation with 
thermomajorisation which we will use to show the lattice structure of the 
introduced space. The projection φ π of an arbitrary probability vector 
q ∈ Δ2d —1 satisfying Eq. ( .13) onto a selected β -order π  in the original 
space can be defined descriptively as taking only those elbows of the 
embedded majorisation curve that match the values of cumulative Gibbs
distribution for the selected permutation. Formally, the projected vector,
q „  := (φ π (^ )) β , is entry-wise defined by

(5.14)

with the indices k (i ) defined by the requirement that Γ ^ ( . )  =  ∑  j =  γ π - y y .

In particular, it is worth noting two properties of the embedding sJJi 
and projections φ π . First, given a vector p ∈ Δ ⅛ with a β -order π p , we 
find that by construction tyπ p  (y )) = p , which follows directly from 
Eq. (5.14). On the other hand, for π  ≠ π p  we find that p > β φ π (p )) . 
The statement is easily shown by observing that the Lorenz curve of 
‰  (p )) connects by? line segments d  +  1 points of the Lorenz curve 
corresponding fp  (∑,∙ ^ ^ (p )^  and therefore majorisation is resolved 

by linear approximation of a convex function, f  [(1 — t )x  +  ty ] ≥  (1 — 
f ) ∕ (x ) +  t f  (y ) for any x , y . The second property is concerned with 
q ∈ Δ 2d —1 satisfying Eq. ( i.1 ) and can be summarised as the fact that 
projecting and re-embedding the vector will always give the object 
majorised by the original vector: q s∙l∙∣i(‰ (tf)) . It follows similarly
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to the prior majorisation by the argument of linear approximation of a 
convex function.

It is necessary to stress that the introduced embedding structure is distinct 
from the one used in the usual method of reducing thermomajorisation 
to majorisation [55]. Most importantly, the standard approach requires
going to the limit of infinite embedding dimension in order to recover
thermomajorisation for arbitrary β  as a special case of standard majorisa- 
tion. In our proposition, a thermomajorisation curve in dimension d  is 
embedded within a 2li  -  1-dimensional space. The main difference lies in 
the non-constant widths of the segments of the Lorenz curve and the fact 
that once the embedded vector p'"i is constructed, its entries should not
be subject to reordering. Finally, we present the argument proving that 
the embedding together with embedded majorisation indeed provide a 
lattice structure.

Corollary 5.2.1. The subset o f  the probability simplex Δ 2<i - 1 satisfying 
Eq. (5.13) and subject to the embedded majorisation defined in Eq. (5.12)
forms a lattice.

Proof. The embedded majorisation may be reinterpretted as thermo- 
majorisation defined for a specific Gibbs state γ 'jt and restricted to a 
particular Weyl chamber of the probability space Δ 2 , ∕ - ι  by comparing 
Eq. (5.13) with an analogous sorting rule from Eq. (3.28). This direct 
isomorphism between thermomajorisation order > β restricted to a single
Weyl chamber, known to provide a lattice structure, and the embedded
majorisation >j,∣i proves the statement. □

5.2.2 Geometry of thermal cones

As already mentioned, for finite temperatures the rules underlying state
transformations are no longer captured by a majorisation relation, but 
ratherbyitsthermodynamicequivalentknownasthermomajorisation[55,
164]. As a result, Birkhoff's theorem cannot be employed anymore, and
the characterisation of the future thermal cone is no longer given by
Theorem 5.1.1. However, the set of Gibbs-preserving matrices still forms
a convex set [151, 152], and the extreme points of the future thermal cone 
can be constructed by employing the following lemma:

Lemma 5.2.2 (Lemma 12 of Ref. [150]). Given p , consider the following 
distributions p π ∈ T ∕  (p ) constructed for  each permutation π  ∈ ¾ . For 

i  ∈ { 1, . . . ,  d } :

1. Let x "  = ∑ J = 0 e - ^ π-1ω and y f  = f?  (x " ).

2. Define p *  := y ιτπ( ι) -  y ππ̂ - 1, with yo ■= 0.

Then, all extreme points of T ∕  (p ) have the form p π for some π . In particular,
a
this implies that T f  (p ) has at most d∖  extremal points.

The above lemma allows one to characterise the future thermal cone of p 
by constructing states p π for each π  ∈ ¾ , and taking their convex hull.
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Figure 5.10: Thermal cones fo r  d  = 3. For a three-level system with population given by p =  (0 .4 , 0 .36, 0 .24) , represented by a black dot • , and energy spectrum £ 1 = 0 , £ 2 = 1 and £ 3 = 2, we plot its thermal cone for (a) β  = 0, (b) β  = 0 .5, (c) β  = 1 .0 and (d) β  →  ∞ . By 
increasing β , the thermal state (black star ★) tends toward the ground state £ 1, and the past thermal cone becomes convex.

It is worth mentioning that 3 + p (p ) can also be constructed by finding
the whole set of extremal Gibbs-preserving matrices [150, 151]. This
follows the same spirit as in Sec. 5.1, where the majorisation cone was 
characterised by employing Theorem 3.3.1. However, this is a harder
problem to solve, and so the extremal Gibbs-preserving matrices were
characterised only for d  ≤  3 [151, 152]. Here, we provide the construction
β
of TT (p ) as a simple corollary of Lemma 5.2.2.

Corollary 5.2.3 (Future thermal cone). The future thermal cone of a 
d -dimensional energy-incoherent state p is given by

T + (p ) = conv[{p π , π  ∈ S d } ] . (5.15)

Furthermore, one can use the embedding lattice to provide an alternative 
formulation for the future thermal cone:

Observation 5.2.4. Since p π = ‰ ( ^ (p )), the future thermal cone o f an 
energy-incoherent state p can be expressed in terms o f all possible projections 
from the related embedding,

T +  (p ) = conv [{‰ (^ (p ) ) , π  ∈ S d } ] . (5.16)

Our main technical contribution is captured by the following Lemma 
that generalises Lemma 5.1.2 and provides the construction of the incom
parable thermal region for finite temperatures. Its proof is based on the 
concept of embedding lattice that we introduced in Sec. 5.2.1 and can be
found in Appendix 5.5.2

Lemma 5.2.5 (Incomparable thermal region). Given an energy-incoherent
state p and a thermal state γ , consider distributions t (n,n) in their β -ordered 
form, constructed for each permutation π  ∈ S d,

(5.17)
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Figure 5.11: Extreme points o f  T - (p ) . The past thermal cone for a three-level system with population give by p =  (0 .7 , 0 .2 , 0 .1), energy 
spectrum E ι = 0 , E 2 = 2 and E 3 = 3, and the inverse temperature β  = 0 .5. At each chamber π , the non-trivial extreme points of the 
past are given by t (n'π'-l (for n  ∈ { 1, 2 , 3 }  and π  ∈ S&) and by extreme points of U ' ∕  1'l conv[(T + ( t (1',π ) ) U  f i +  ( l (1'+ 1' π ) )] (red dots). The
remaining ones are sharp states, points in the boundary between chambers (green dots) and those which are on the edge of the probability
simplex, i.e., (γ i j ) t  = (γ i δ i k  +  γ j δ i k )∕ (γ i  +  γ j ) , for i ≠  j ,  and k  ∈ { 1 , 2 , 3 } .

with

Defining the set

the incomparable region o f p is given by

(5.18a)

(5.18b)

(5.19)

(5.20)

Analogously to the infinite temperature case, Lemma 5.2.5 allows us to
obtain the past thermal cone of p .

Proof. Following the same reasoning as in the proof of Theorem 5.1.3, we
only need to use the fact that int(T ) = T +  (p ) U T (p ) . □

In Fig. 5.10, we illustrate Lemma 5.2.5 and Theorem 5.2.6 for a three-level 
system. We also provide a Mathematica code [165] that constructs the 
set of extreme points of the future and past thermal cones for arbitrary
dimensions.

As before, the past thermal cone forms a convex polytope only when 
restricted to a single Weyl chamber, now defined as a set of probability
vectors with common β -order. The extreme points of the past thermal 
cone correspond to tangent vectors t (n,n) or by their projection onto the
boundary of the probability simplex. The exceptional points in compar
ison with the infinite-temperature case may appear when considering
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extreme points of U ^= 11 conv[(T+  (t ( ' ,π ) ) U T+  (t F+1,π ) )] for a given cham
ber π . Vertices arising in this way may not correspond to any tangent 
vector (see Fig. 5.11). Moreover, the t (n,n) vectors are also responsible for 
the convexity of the past thermal cone, and the following observation
illustrates this:

Corollary 5.2.7 (Asymptotic temperature limit). Approaching the limit of
β  →  ∞ , the past thermal cone becomes convex.

Proof. By dividing the probability simplex into equal chambers with the
thermal state in the barycenter, the past thermal cone is the union of 
d ! convex pieces. As β  →  ∞ , the thermal state collapses to the ground 
state. There is only one chamber in this limit, and therefore, the past
thermal cone is a single convex piece [see Fig.5.10 e for an example in the
particular case of d = 3]. □

The intuition behind the above observation can be understood by studying
the behaviour of a three-level system and the tangent vector t (3, (132) ) . By 
a decreasing temperature, this extremal point tends towards the edge of 
the simplex and reaches the edge at β  →  ∞  [see Figs. 5.10b, e].

To wrap up the considerations of the geometry of thermal cones, let 
us go back, once again, to the analogy between the thermal cones and 
special relativity. Consider that given a specific division of space-time
into future, past and space-like regions, one is able to recover the specific
event generating it, which we may refer to as present. Concisely -  there
is a one-to-one relation between events and the divisions of space-time 
they generate. The situation is exactly reflected for thermal cones with
β  >  0 -  given a specific arrangement of incomparable region and future
and past thermal cones, one can exactly recover the current state of the 
system [see the black dot •  in Fig. 5.10b-d]. It is in stark contrast with the
majorisation cones for β  = 0, where every division into past, future and 
incomparable possesses d !-fold symmetry [see Fig. 5.10a] and hence, the
present state of the system cannot be recovered solely on its basis unless
provided with additional information like the permutation which sorts 
the probabilities in non-decreasing order.

5.3 Volume of thermal cones

In the previous sections, we characterised and discussed the behaviour
of thermal cones by introducing explicit constructions of the past, the 
future and the incomparable region. It is then natural to ask what is 
the role played by their volumes in quantifying the resourcefulness of 
different states [162, 166]. Thus, for a d-dimensional probability vector p 
we define the relative volumes of its thermal cones as

.  V  [t t  W
tVi (p ) : ∖ with i  ∈ { 0 , - , + } , (5.22)

where V  denotes the volume measured using the Euclidean metric.
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We start our analysis of volumes of thermal cones by presenting an 
operational interpretation in terms of guessing probabilities for the 
future and past of a given state subject to a thermal evolution; such 
interpretation provides a solid basis for presenting the aforementioned 
volumes as resource-theoretic monotones. Subsequently, we proceed
to an in-depth analysis of the volumes with a particular focus on their
behaviour as a function of the inverse temperature β . Finally, we explain
how to modify the analysis to obtain meaningful volumes of entanglement 
cones.

5.3.1 Interpretation

Consider a task of predicting the future, which roughly translates to
guessing a state q by having knowledge that it has originated from a 
given prior state p . In this case, the probability of correctly guessing a 
state that is e-distant from q is given by

(5.23)

where B ε  (q ) is an e -ball centred at q . We may get rid of the dependence 
on e  and q by taking the ratio for two different states p 1 and p 2 ,

(5.24)

Thus, the ratio of volumes yields a relative probability of guessing the
future of two different states. In particular, if p ∙1 ∈ T ∕ ( p-l ), then also 
T +  (p 2) ⊂ T +  (p-l ) and in consequence

(5.25)

This can be understood as follows -  as the evolution of a system progresses,
the future becomes easier to guess or, in other words, more predictable.

In complete analogy, we may define a game in which, instead of guessing 
-  or predicting -  the future of a state p , one has to guess its past. For such 
a game, it is easy to show that

so that the ratio of volumes yields the relative probability of guessing 
the past. Given p i  ∈ T -  (p 2) we have V - p (p i )/V -p(p 2) <  1, which simply
means that as the evolution towards equilibrium progresses, one finds
the past of a given state harder and harder to guess correctly.
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5.3.2 Properties

We now show that the volumes of the thermal cones are thermody
namic monotones, i.e., functions of a state that decrease under thermal 
operations.

o
Theorem 5.3.1 (Thermodynamic monotones). The relative volumes V '
ft ft ft
and 1 -  V - = V+ p +  V 0p are thermodynamic monotones. Moreover, both
monotones are faithful, taking the value 0 only when applied to the Gibbs state

y .

Proof. One can straightforwardly show that both quantities decrease
monotonically under thermodynamic operations. This is a simple conse
quence of the fact that for p  and q connected via a thermal operation, we 
have tT (q ) ⊂ t ∕ (p ) and T -  (p ) ⊂ T -  (q ) which automatically implies 
V  (q ) ≤  T  (p ) and V -  (q ) ≥  V -  (p ) .

In order to demonstrate its faithfulness, first note that every state that 
is not thermal can be mapped to a thermal state, thus showing that 
1 -  V -  (γ ) = 0. Similarly, the Gibbs state cannot be mapped via thermal 
operations to anything else than itself, thus V+ (γ ) = 0. Now, in order to
show that both monotones are non-zero for any state different from the
Gibbs state, it suffices to demonstrate that V+ (p ) >  0 for any p  ≠  γ . It 
is enough to consider, without loss of generality, a state p  thermalised 
within a (d -  1)-dimensional subspace, i.e., p,∙∣ p j  = γ ι ∕γ j  for all i ≠ j  ≠ 1. 
For fc ∈ {2, . . . ,  d } , using β -swaps between levels 1 and fc defined as [150]

we generate d -  1 new points shifted from the original state by displace
ments (δ fc) i = δ fce ⅛ defined by the Levi-Civita symbol e⅛ and δ ⅛ ≠ 0. 
The entire set { δ ⅛ } fcfc= 2 of displacements is linearly independent; therefore, 
they define a (d  -  1)-dimensional simplex of non-zero volume. Conversely, 
if we assume that δ ⅛ = 0 for any fc, we are led to a conclusion that the
system is thermalised between levels 1 and fc and, by transitivity, it must
be equal to the Gibbs state γ , which leads to a contradiction with the
initial assumption. Finally, we restore the full generality by noticing that
any state q contains in its future cone states thermalised in any of the 
(d -  1)-dimensional subspaces and, consequently, their entire future cone. 
Therefore, the non-zero volume of the latter implies the non-zero volume 
of the former.

The behaviour of V+  and V -  as a function of β  strongly depends on 
the ^ -ordering of the state under consideration. Among all ^ -orderings, 
there are two extreme cases, namely the one where the population and 
energies are arranged in non-increasing order (p ,∙ ≤  p j  for E ,∙ ≤  E j ), and 
the other in which the populations are ‘anti-ordered' with respect to 
the energies (E ,∙ ≤  E j  implies p ,∙ ≥  p j ). These two distinct ^ -orderings
characterise passive and maximally active states, respectively [167, 168]. At 
the bottom left of Fig. 5.12, for a three-level system, we depict each Weyl 
chamber with different colours: passive states lie in the black chamber, 
whereas maximally active states lie in the red one. Let us first focus on
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the volume of the future thermal cone and analyse how it changes by
increasing the inverse temperature β  from β  = 0 to β  →  ∞ . In the present
analysis, the initial state is kept fixed, while the thermal state is taken to
be a function of temperature γ  = γ (β ), and it follows a trajectory from
the centre of the probability simplex to the ground state (see Fig. 5.10 for 
an example considering a three-level system).

If at β  = 0 the initial state p  is passive, the volume of its future thermal 
cone first decreases with β , and then starts to increase when γ  passes p 
(i.e., when p  changes its ^ -ordering), tending asymptotically to a constant 
value (see black curves in Fig. 5.12). However, if at β  = 0 the initial
ft
state p  is maximally active, the behaviour of the volume of T +  (p ) differs 
from the previous case. As the thermal state approaches the ground 
state with increasing β , the distance between maximally active states 
and γ  increases with β , because the ground state and p  are located in
opposite chambers. Consequently, the volume increases asymptotically
to a constant value (see red curves in Fig. 5.12). For general states, one
can provide a qualitative explanation of the behaviour of their volumes
based on their ^ -orderings. The inverse temperatures β  for which oneft
finds kinks in the future volume V+p (p ) (vertical lines in Fig. 5.12) match 
with the transitions from a given ^ -ordering to another one. This should 
be compared with the isovolumetric level sets in Fig. 5.13, where a 
matching non-smooth behaviour is found. Observe that similar kinksft
are not encountered for the past volume V -  (p ), related to the smooth 
behaviour of the corresponding level sets. However, by considering 
a passive state p  and all its permutations, we can demonstrate that 
maximally active and passive states have maximum and minimum future
volumes, respectively:

Proposition 5.3.2 (Max and min volumes). For a d -dimensional energy- 
incoherent state p with Hamiltonian H , and all states defined by permuting
its population, the future thermal cone of the permutation resulting in the 
maximally active and passive states achieve maximum and minimum volumes, 
respectively.

Proof. The Corollary is proven by noting that all permutations of p  are 
thermomajorised by the one corresponding to the maximally active 
state p max, while the associated passive state p p is thermomajorised 
by all the other permutations. Consequently, T + (p p ) ⊂ T + (Π p ), while 
3 + (Π p ) ⊂ T + (p m ) for any permutation matrix Π .

Corollary 5.3.2, also implies that the volume of the past thermal cone is
minimum and maximum for the one corresponding to the maximally
active and passive states, respectively (see Fig. 5.12). To provide further
characterisation of the volumes, we apply Lemma 5.2.5 to a non-full rank 
state, which allows us to derive the following result:

Proposition 5.3.3 (Zero volume). The past thermal cone of a non-full rank 
state has volume zero despite being non-empty.

β = 0 p = 1.0 β = 1.5
Z  A ▲

Figure 5.12: Thermal cone volumes.  For
all permutations of the state p =(0 . 52 , 0.12 ,  0.36), we plot the volume of
the future thermal cone V +̂  (top), the in

comparable thermal region (centre)
and the past thermal cone (bottom).
Each colour corresponds to a permuta
tion associated with a given chamber 
of the probability simplex. Among all 
states, two are distinct: the maximally ac
tive (red curve) P max = (0 .12, 0 .36 , 0 .52) 
and the passive (black curve) p  ̂ = (0 .52 , 0 .36, 0 .12) states. Any other per
mutation of the initial state characterises 
a different active state. The kinks in V +̂

match with the inverse temperatures at
which p changes its β-ordering (vertical
lines of matching colors). The three dif
ferent simplices at the bottom show how 
the Weyl chambers change with β .

Proof. Without loss of generality, consider a state of non-full rank p = 
(p i , . . . ,  p ⅛- ι , 0) . Applying Eq. (5.17) yields t (d,π) = (1, 0, . . . ,  0), for all π .
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Ei E2 Ei E2 Eι E2

Figure 5.13: Isovolumetric sets for thermal cones. The volume of the future 'l' +, incomparable , and past thermal regions °V-, in the space 
of three-dimensional probability distributions for an equidistant energy spectrum E χ = 0, E 2 = 1 and E 3 = 2 and inverse temperature (a) 
β  = 0 and (b) β  = 0 .5. The thermal state is depicted by a grey star ★.

Consequently, the incomparable region is given by all points in the 
interior of the probability simplex, except those that are in the future of
p . Then, according to Theorem (5.20), all the points of the past will be
a
located at the edge, and therefore the volume of T -  (p ) is zero. □

Understanding the behaviour of the thermal incomparable region is not
directly straightforward. However, Corollary 5.3.3 helps us to find the
state of non-full rank with the largest incomparable region:

Proposition 5.3.4 (Largest incomparagion region). The non-full rank 
state with the largest thermal incomparable region is given by

(5.27)

Proof. Consider an arbitrary non-full rank state p . According to Corol
lary 5.3.3, the volume of the thermal incomparable region can be written
as (p̂ ) = 1 -  °V++ (p ) . Now note that, p > β g , and T+ (g ) ⊂ T + (p ). This 
implies that g  is the non-full rank state with the smallest future thermal 
cone and, therefore, with the largest incomparable region.

So far, the behaviour and properties of the volumes have been analysed
and discussed without explicitly calculating them. There are several 
known algorithms for computing volumes of convex polytopes, such
as triangulation, signed decomposition methods, or even direct integra
tion [169, 170]. These algorithms can be employed to obtain the volumes
of past and future cones; the volume of the incomparable region can be 
calculated using the fact that the total volume of the probability simplex

is equal to one. For a three-dimensional energy-incoherent state p ,
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expressions for the volumes can be easily derived. The starting point is 
to consider the Gauss area formula [171], which allows us to determine
the area of any polygon with vertices described by Cartesian coordinates.
Taking into account a polygon P  whose vertices, assumed to be arranged 
along the boundary in a clockwise manner, are denoted by P j = (x j , y,∙), 
with i = { 1, . . . ,  n } , the Euclidean volume can be expressed as

(5.28)

where x n+ ι  = Xi  and y n+i = y ι . For β  = 0, deriving the volume of the
thermal cones is straightforward, since the vertices, or extreme points,
are permutation of p . In this case, we arrive at the following closed-form 
expressions:

(5.29)

(5.30)

(5.31)

where θ  is the Heaviside step function. The situation involving a finite 
β  is not as simple as before. Now, the extreme points are obtained by
applying Lemma 5.2.2, and, although computationally it is an easy task 
to calculate them, a neat and concise closed-form expression cannot be 
derived.

Finally, let us look at iso-volumetric curves for different values of β . In
Fig. 5.13, we plot these curves for a three-level system and four different
temperatures. As expected, the symmetry is broken for any β  >  0 as 
E 3 >  E 2 >  E ι ∙ A simple fact worth mentioning is that the volume of 
the future thermal cone of the highest excited state s ⅛ = (0 , . . . ,  0, 1) is 
always independent of β , maximum, and equal to unity. Conversely, the 
past thermal cone volume is maximum for a Gibbs state and equal to
unity. Moreover, these curves give insight into how resourceful states are 
distributed within the space of states.

5.3.3 The volumes of entanglement cones

Finally, we will briefly discuss the general qualitative aspects of the
volumes of entanglement cones based on the numerical considerations. 
Detailed formal methods used in order to obtain them are discussed in
Section 5.5.4.

Naturally, depending on the context, the probability distribution p  may 
pertain to the Schmidt coefficients of a pure entangled state or the 
coefficients resulting from decomposing the state in a distinguished
basis in the context of coherence [155, 156]. Despite the close connection
between the resource theory of thermodynamics (at β  = 0) with the 
resource theories of entanglement and coherence, crucial differences
appear already at the level of a single state as the order is reversed [154],
hence,interchangingthe future T+  withthe past T- .The difference iseven
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(d) (0,0,1)(0,0,1) (0,0,1) (C) (0,0,1)

(1,0,0) (0,1,0) (1,0,0) (0,1,0)(1,0,0) (0,1,0) (1,0,0) (0,1,0)

Figure 5.14: Isovolumetric sets for entanglement cones. In order to calculate the isovolumetric lines for (a) the past cone, (b) the incomparable
region and (c) the future cone for entanglement resource theory of states in H 3× 3 one considers the density of the Schmidt coefficients p 
induced by the Haar measure in the space H 9 of pure bipartite states, as depicted in panel (d) by showing a sample of 5 ∙ 104 points in Δ3 .
Observe the scarcity of points in the central region, resulting in characteristic concentration of states with large future in the centre of the 
simplex and large past in the vicinity of the vertices.

more pronounced within the context of volumes for the entanglement of 
pure states under LOCC operations.

The distribution of Schmidt coefficients induced by the uniform Haar 
measure in the space of pure bipartite states is significantly different from
the flat distribution in the probability simplex Δ ⅛ [172]. In particular, one
observes a repulsion from the centre and, in the case of entangled systems 
of unequal dimension, from the facets of the simplex. Consequently, 
this implies a significant difference in the qualitative features of the
isovolumetric curves. Fig. 5.14 shows the isovolumetric curves for d = 3
with equal-sized systems. Observe that states with large future volumes
V+  are concentrated around the centre of the simplex, which is explained
by the repelling property. Inverse effects can be seen for the states with 
large past volumes V-  , which concentrate at the boundaries of the 
simplex. The differences become even more pronounced for systems of 
unequal dimensions, as we will demonstrate in qualitative figures in 
Section 5.5.4 (see Fig. 5.17).

5.4 Coherent thermal cones for a two-level 
system

Finally, let us now explain how to use the results from Refs. [173] and [149]
to obtain the future and past thermal cones beyond energy-incoherent 
states. Specifically, we will explicitly construct the thermal cones for a 
qubit under thermal and Gibbs-preserving operations.

Coherent thermal cones for thermal operations

Consider initial and target states of a two level system, p  and σ , with
both written in the energy eigenbasis as

(5.32)

where c  and d  are assumed to be real without loss of generality, which 
amounts to considering a cross-section of the Bloch ball in the X Z  plane. 
Moreover, the thermal ground state occupation of the considered two- 
level system will be denoted by γ . It has been shown that for thermal
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∏  sr-(p) ∏  s⅛(p) ∏  sr+(p)

Figure 5.15: For a two-level system with initial state p , represented by a black dot • , 
and thermal state represented by a black star ★ with Bloch vectors rp =  (0 .2 , 0 , 0 .5) and 
r y  =  (0 , 0 , 1/3) , respectively, we depict in the real cross-section of the Bloch ball, the
coherent thermal cone (a) under Gibbs-preserving operations (b) under thermal operations

operations, the coherences of the initial and target states have to satisfy
the following inequality [173],

(5.33)

Thus, we find the boundary of the future thermal cone by saturating
Eq. (5.33), and solving it for q  we obtain the achievable ground state 
occupation as a function of target coherence d ,

(5.34)

Therefore, the coherent future thermal cone is given by the region 
delimited by Eq. (5.34) from one side and a line segment connecting 
( - c ,  p ) and (c ,  p ) . To characterise the coherent past thermal cone, it will 
be convenient to introduce a number dcross ≥  0 defined by the relation 
^cross +  ^ (^cross)2 = 1.

The coherent past thermal cone is generically composed of two disjoint 
regions. The first region is contained between a line segment connecting
the points (c ,  p ) and (dcross, p ), the curve q 1 (d ) for d  ∈ [c ,  dcross] and the 
boundary of the Bloch ball, together with its reflection with respect to 
the Z -axis. The second one is obtained in a similar manner by focussing 
on the past state rather than the target, and thus by solving Eq. (5.33) 
with interchanges p  θ  q  and c  θ  d . This results in

(5.35)

with d ∈ [dmin, rfmaχ ], where d m [n and d m ax are real positive solutions of 
equation q (d )2 +  d 2 = 1, such that dcross ≤  d m [n ≤  dmax. However, for large 
values of coherence c , we note that this second region may not appear at 
all. Finally, the incomparable region 3 g (p) is obtained by subtracting the
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past and future cones from the entire Bloch ball.

Coherent thermal cones for Gibbs-preserving operations

Consider a parametrisation of qubit states p  in the Bloch sphere repre
sentation,

(5.36)

where σ  = (σ x , σ y , σ z ) denotes the vector of Pauli matrices. The Bloch 
vectors of the starting state p , target state p '  and the Gibbs state γ  are 
given by:

r p = (x , y , z ) , r p > = (x ' , y ' , z ' ) , r y = (0 , 0, ζ ) , (5.37)

where the z coordinate of the Gibbs state can be related to the partition 
function Z  by ζ  = 2Z - 1 -  1 ≥  0.

According to Ref. [149], there exists a GP quantum channel E  such 
that E (p) = p '  if and only if R ± (p ) ≥  R ± (p ' ) for both signs, where 
R ± (p ) = δ (p ) ±  ζ Z and

δ(p) -.=  y ∣(z  -  ζ ) 2 +  (x 2 +  y 2)(1 -  ζ 2) . (5.38)

Consequently, the future thermal cone T+  (p ) of any qubit state p  under GP 
operations can be directly constructed from the above result. For a generic 
qubit state p , we first orient the Bloch sphere so that its X Z  plane coincides 
with the plane containing p  and a thermal state γ , i.e., r p = (x ,  0 , z ). Then, 
define two disks, D ι (p ) and D 2 (p ) with corresponding circles C ι (p ) and 
C 2 (p ), of radii

(5.39)

centred at
Z1 (p) = [0, 0 , ζ ( 1 +  R 1 (p))],
Z2 (p) = [0 , 0, ζ ( 1 -  K 2 (p ))] . ( )

Therefore, the future thermal cone under GP quantum channels is given 
by the intersection of two disks of radii R 1 (p ) and R 2 (p ) centred at Z1 (p ) 
and Z2 (p ), T + (p ) = D 1(p ) ∩ D 2 (p ).

The incomparable region is given by mixed conditions, i.e., p '  ∈ 3 ⅛ (p) 
if and only if R ± (p ) ≥  R ± (p ' ) and R + (p ) <  R + (p ' ), or in terms of the 
disks given beforehand, 3 g (p) = D 1 (p ) ∩ D 2 (p)∖T+ (p ). Finally, the past 
cone T - (p ) can be easily given by subtracting the future cone and the 
incomparable region from the entire Bloch ball.

5.5 Derivation of the results

In this section, we derive the two most important results of this chapter, 
namely, the incomparable thermal region for β  = 0 and β  ≥  0. We 
proceed by first considering the case of β  = 0, covered by Lemma 5.1.2, 
and develop the notion of the so-called tangent vectors t (n) that comprise 
the boundary of the incomparable region. Then, we generalize the notion
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Figure 5.16: Lorenz curves o f  the tangent vectors t (n). Majorisation curves of the state p =  (0 .43 , 0 .37 , 0 .18, 0 .02) (black) and (a) t (1) (b) t (2) 

(c) t (3) (d) t (4) and (e) all tangent vectors j  ∈ { 1, 2 , 3 , 4 } , respectively.

of tangent vectors and use it in the proof of Lemma 5.2.5, which concerns
the incomparable region for β  >  0.

5.5.1 Infinite-temperature

a. Tangent vector

The first concept we will need in the proof is that of a tangent probability 
vector, referred to as the tangent vector for brevity, which will prove to
be an essential ingredient.

Let Ad  be the set of probability vectors of dimension d  with real en
tries, Ad  = { ( p ι , . . . ,  p d ) ∈ : Σ i P i = 1}, and let us restrict ourselves to
vectors ordered in a non-increasing order, i.e., p,∙ ≥  p i+ ↑ . To avoid compli
cations, we assume, without loss of generality, that all p,∙ ≠ p j . Following
the notation established in Chapter 3, we will denote probability vectors
by bold lowercase letters p  ∈ Ad  and their corresponding cumulative 
counterparts by bold uppercase vectors p  : P i =  ∑ j =  p ,∙ with i ∈ 0, . . .  , d . 
For any vector p , we introduce a tangent vector t (p ) ≡ t ∈ Ad  by impos
ing that all its components except the first and the last are equal, t,∙ = t j  

for all 1 <  i <  j  <  d . Additionally, we require that the cumulative vector 
T  agrees with the vector p  in at most two consecutive points, i.e., T i = P i 

and Tj  >  P j for all j  ∈ { 1, . . .  , d  -  1} \ i , or Tj  = P j  for j  ∈ { i ,  i +  1} and 
T  >  P j  elsewhere. The two imposed conditions follow the intuition of 
tangency and, by construction, satisfy the majorisation relation t <  p . 
Furthermore, note that T0 = P 0 = 0 and T1j  = P j  = 1 and thus are 
naturally excluded from the considerations.

Indeed, assuming equality between T  and P  at exactly two consecutive 
points restricts the tangent vectors to a set of d  unique probability vectors 
t (n) defined as

t (n X p ) ≡  t (n) = (t ( n ) , p n , . . . , p n , t ^  , (5.41)
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for 1 ≤  n  ≤  d  with the first and last components given by

(5.42)

Observe that the tangent vectors t (n )  that agree with the Lorenz curve of 
p  at two successive points can be used to construct all possible tangent 
vectors t that satisfy the condition of agreement at at least a single point, 
Ti = P i . Indeed, consider a vector t (λ , ι ) ≡ t = (1 _  λ )t ( ;)  +  λ t ( !+ 1) . Direct 
calculation shows that it is tangent at just one point, Tj∙ = λ T ( 1') +  (1 _  Λ )T ( 1' + 1) = P i . Similarly, we arrive at Tj  >  P j  for j  ≠  i and 0 <  λ  <  1.

Thus, starting with a discrete set of d  tangent vectors t (n) , we recover the 
entire continuous family of tangent vectors t (Λ , i ) . This argument can 
be further formalised by considering the Lorenz curves f p (x ) and f t  (x ) ∙
Assuming the left and right derivatives of the former, lim ' p (x ) =
d
d  ∙ p i and lim χ f 'p (x ) = d  ∙ p i+ 1, we obtain the extremal slope values 
for the tangent lines at the ∕ -th elbow. Now, considering the second Lorenz 
curve by construction we have that f t  (i / d ) = f p  (i /d ) and its derivative 
at this point, f  ' t (i /d ) = d  [(1 _  λ )p i +  λ p i  +  1], span all values between 
the extremal slope values d ∙ p t and d  ∙ p i+ 1, therefore exhausting the 
family of possible tangent lines at the ∕ -th elbow.

b. Lattice

Latticesprovide asettinginwhich itisnatural to representthe precedence 
or succession of elements within a given set. In particular, they can be 
used to establish a time-like structure for a given set, as defined by a 
lattice (see Definition 3.2.1) .

It is well known that the partially ordered set (Δ d , > )  of d-dimensional 
probability vectors with real entries in non-increasing order under 
majorisation forms a lattice [149, 174]. In this setting, the join p ∨  q can 
be interpreted as the last common past point of p  and q , while the meet 
p ∧  q can be seen as the first common future point of the pair p , q . The
procedure to obtain the join and meet has been illustrated in Ref. [149],
and since part of our proof relies on the existence of the join, we will now 
review the algorithm used to construct it.

To construct the join of p  and q , we start with a probability vector r (0) 

with elements defined by

r (0) = max { P i , Q i } _  max { P ; _ 1 , Q , ∙ . 1} . (5.43)

At this stage, it is possible that the entries of r (0) are not ordered in 
a non-increasing manner. However, we can obtain a properly ordered 
probability vector r = p ∨  q , defining the actual join, in no more than 
d _  1 steps. In each step k  ≥  0, we define N  ≥  2 as the smallest index
where there is an increase between two consecutive components of the
probability vector r® , i.e., f ( d N  >  N  _  1. Next, we define M  ≤  N  _  1 
in a way that introducing constant probabilities for the entries with 
i  ∈ M , . . .  , N  eliminates the growth. This is done by ensuring that

(5.44)



5.5 Derivation of the results 75

Thus, the next iterative step r  ( fc+1) is defined by setting its components 
as

(5.45)

This construction is repeated until for some k , the probability vector 
r (kr) ≡ r  is ordered non-increasingly; in this way we get the proper join.

c. Incomparable region and the boundaries

As a final piece of information needed to understand the proofs, we 
introduce the definition of the boundary of the past cone.

Definition 5.5.1 (Boundary of the past thermal cone). Consider a d - 
dimensional energy incoherent state p  ∈ p  with d  ≥  3. We define the 
boundary o f the past thermal cone as the set o f probability vectors q >  p for  
which the cumulative vector Q is equal to the cumulative vector P  at least 
one point. In other words, P j  <  Q j  for  some proper subset o f the indices j  

and P i = Q i for all other indices.

One can define the boundary of the future cone in a similar manner by 
changing the direction of the inequalities. By considering the common 
part of the boundary between the future and past cones, we arrive at a
simple observation:

Observation 5.5.1 (Common point of future and past cones). A point
that lies simultaneously at the common part o f the boundary between the 
future and the past must fulfil V  jP j = Q i. Therefore, for  β  = 0 we have the 
equality o f p and q up to a permutation, giving a total o f dl common points 
between the future and the past o f any vector p .

Equipped with the notion of tangent vectors t (n ) , the join p  V  q and the 
boundaryofthe pastcone,we are nowprepared to tackle the Lemma5.1.2 
concerning the incomparable region, and this is done by proving the 
following result:

Lemma 5.5.2. Consider p , q ∈ and assume that p q . Then, q belongs 
to the incomparable region o f p , q ∈ T (p ), i f  and only i f  it belongs to the 
future majorisation cone o f some vector t tangent to p , q ∈ T + (t ), with 

t ≡ t (p ; λ ,  n ) = λ t (n ) (p ) +  (1 -  λ )t (n+ r ) (p ) ,

for some n  ∈ { 1, d  -  1} and Λ  ∈ [0, 1] .

Proof. To prove the “if" direction, we take a probability vector lying in the 
interior of the future of the tangent vector, q ∈ int[3 + (l )]. Then, to prove 
that q ∈ ¾ (p ), one needs to show that q p . By construction, we have 
Tk ≥  P k , for every k  ≠  n , with equality when k  = n , so P n = Tn >  Q n 

with the equality excluded by putting q in the interior of the future. 
Consequently, P n >  Q n, and thus q p  and by the initial assumption, 
p q . Therefore, q ∈ ¾ (p ) .
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In order to demonstrate the “only if" direction, let us take an arbitrary
q ∈ ¾ (p ) and recall that there always exists the last common past point 
for p  and q called join, r = p ∨  q . From the construction of the join 
r , it is found that the entries of the cumulative distribution R  will be 
divided into three subsets, namely points common with P , common with 
Q  and the ones lying above either, that is I p := { i : 0 <  i <  d ,  R i = Pβ} , 
I q := { i : 0 <  i <  d ,  R i = Q i } and ∕  := {0 <  j  <  d ,  : R j  >  m ax (P j , Q j ) } , 
respectively. In particular, looking at equation (5.45) one can see that 
it is either the case that M  -  1 ∈ I p and N  +  1 ∈ I q , or M  -  1 ∈ I p and 
N  +  1 ∈ I q or by invoking geometric intuition, endpoints of the flat 
fragments of R  will join P  and Q . Thus, at each step, the sets I p and I q 

will be non-empty. By this argument, we may choose any index i ∈ I p 

and construct a tangent vector t ' for the join r at the ∕ -th elbow.

t '  ≡ t (r ; μ , i ) = μ t (i) (r ) +  (1 -  μ )t ( i+ 1) (r ) (5.46)

for any μ  ∈ [0 , 1] . This vector obeys, by construction, the majorisation 
relation t ' > r >  q . Furthermore, due to the choice i ∈ I p it is also a 
tangent vector for the p ,

t ' = t ≡ t (p ; λ (μ } , i )  = λ (μ } t (l\p)  +  (1 - λ (μ } } t b+ Y p }  (MZ)

for λ (μ ) ∈ [0 , 1] . Therefore, by the properties of the tangent vector t it 
follows that q ∈ T + (t ) .

The last step necessary in order to demonstrate the Lemma 5.1.2 is to 
notice that the tangent vectors t (p ; λ (μ ) , i ) are convex combinations 
of t ( l) (p ) and t ( l+ 1) (p ) and their future majorisation cones are convex,
therefore, union of their future cones corresponds to the convex hull of
the future cones of the extreme points

U  T + (t (p ; λ , i )) = conv T+  t w ∪ T+  t ( i+ V) (5.48)
Λ ∈[ 0 , 1 ]  L V '

which completes the statement of Lemma 5.1.2.

5.5.2 Finite temperatures

The proof of Lemma 5.2.5 for β  >  0 is developed in the simplest way by 
considering the embedding sJJi introduced in Section 5.2.1, which takes 
d-dimensional probability distributions p ∈ A⅛ to its higher-dimensional 
image D K p) ∈ A™ which allows us to closely follow the steps of the proof 
for β  = 0.

After shifting our focus to the embedded space, we construct the cor
responding tangent vectors t w (p ; λ , n ) = λ t '"il'",'l(p ) +  (1 -  λ )t r o ( " + 1) (p )
that respect the rules for constructing the majorisation curve within the
embedded space. In particular, in full analogy to the β  = 0 case, the full 
family can be given in terms of vectors tangent to the n -th linear fragment 
of the embedded majorisation curve,

(5.49)
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where the first entry is defined in such a way that the majorisation 
curves, defined as the piecewise-linear functions given by their elbows{ (Γ * i , P * i)}2=q1∕ agree in at least one point, f ^ l (Γ f ) = /™ (r™ ) and 
the last one guarantees that ∑ i t ^ ~ n ') = 1. Observe that vectors f TO(n)

constructed in this way are tangent with respect to the embedded Lorenz
curve, i.e., f ™ ( n ) / y ™ = f ™ ( n ) / y ™ , thus taking into account the varying

intervals on the horizontal axis. Equipped with these, we pose a technical 
lemma similar to Lemma 5.5.2,

As a preliminary step, we give the algorithm for the construction of the
join in the embedding space by modifying the crucial steps (5.44) and 
(5.45) to take into account the varying widths and redefine the point N  of 
increase by requiring r ™ (fc)/ y ™ >  r  Consequently, we redefine
M  by a condition similar to (5.44) that incorporates the scaling,

(5.50)

Finally, we define the join candidate in the k -th step in full analogy to 
(5.45) as

(5.51)

The algorithm defined in this way follows precisely the same logic as the
one given in Ref. [149] and thus it always terminates, in this in no more

As a final remark, one has to note that the family of tangent vec
tors tW " ) (r ∞ ) should be indexed by n  ∈ { 1, . . . ,  d , } , where the num
ber d , of constant-slope fragments of the join, even though bounded, 
d w (̂p , q ) ≥  d , ≥  d , is a priori not well defined due to many possible ways 
of disagreement between the ^ -orders of p  and q . With these tools, we 
are ready to present the technical lemma needed for constructing the 
incomparable region for β  >  0.

Lemma 5.5.3. tW,(q ) ≡ q "'i belongs to the incomparable region o f  ̂ (p ) ≡ 
p w-, q"'i- p w ,̂ i f  and only i f  it belongs to the future thermal cone o f some
vector tto tangent to p 'f  q "'i >  t' f , with

t w  ≡ t w (p ; λ , n ) = λ t w (n ) (p ) +  (1 -  λ )t w (n + 1∖ p ) , 

for some n  ∈ { 1, d  -  1} and Λ  ∈ [0, 1] .

Proof. The proof follows in complete analogy with the standard majori-
sation case as presented in the proof for Lemma 5.5.2 by replacing the 
standard majorisation >  in every statement with the majorisation variant > TO given for the embedding space and employing the adjusted join 
construction, summarised in equations (5.50) and (5.51).

In order to go back from the embedded space A™ to the formulation 
of Lemma 5.2.5 in the original space A^  we combine two observations
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following from embedding and projection operations. First, note that 
majorisation in embedded space implies majorisation between projections,
thus tto >to ⅛ ⇒  Φ π (t w ) > β ) for every order π . Second, observe
that embedding preserves the majorisation relations between the vectors,
therefore q ∈ 9 ⅛ (p ) ⇔  f f l (q ) ∈ 9 g (^ (p )). These two statements show 
that it is enough to consider vectors t (n,n) = φ π (t TO (n)) and convex
combinations of their future thermal cones, thus proving Lemma 5.2.5.

□

5.5.3 Construction of probabilistic majorisation cones

In this section, we derive the results presented in Section 5.1.2. Specifically, 
we explore how to extend the notion of majorisation cones to probabilistic 
ones. For the convenience of the reader, we restate the theorem concerning 
probabilistic transformations:

Theorem 5.1.4. Consider two bipartite pure states ∣ψ} and , whose 
Schmidt decompositions are described by probability vectors p and q , respec
tively. The maximal transformation probability from  ∣ψ} to ∣φ^ under LOCC
is given by

(5.9)

To establish a direct connection to majorization, we reformulate the above 
theorem as follows:

(5.52)

By setting P (p , q ) = 1, we recover the standard majorisation condition
on deterministic convertibility,

∑ '∀ 1 ≤ k ≤ d : 1 ≤  — ------ r ⇔  p <  q . (5.53)

To determine the probabilistic past cone T - (p , P ) at probability P , we
consider

(5.55)

∀ 1 ≤ k ≤ d : P  ≤  1— ⇒  P  -  P P k ≤  1 -  Q k ⇒  Q k ≤  P P k +  (1 -  P )
1 -  P k ⇒  q <  p ,

(5.54)
with an auxiliary distribution

which is always a proper probability distribution ordered non-increasingly,
p = p 4 , therefore providing a proper Lorenz curve.
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Following a similar procedure for the future cone T + (p , P ) leads to

(5.56)
with the second auxiliary distribution

(5.57)

In contrast to the case of the past cone, the distribution p  in this formula
tion is not ordered in a non-increasing manner beyond a certain value 
of P . At first glance, one might think that reordering should solve the
problem;however,itwould be equivalenttoadecrease inthe probabilistic
future with decreasing P , which creates a contradiction. The solution is 
provided by noting that Vidal's criterion deals with rescaled entries of 
the Lorenz curve rather than the probabilities themselves. Therefore, the
Lorenz curve for p  should remain convex for all values of P  without the
need for reordering.

Consider the following critical values of P , namely,

(5.58)

for which the first n  entries of the distribution p  will not be ordered
non-increasingly, resulting in an improper Lorenz curve. The resulting
non-convexity is controlled by replacing

(5.59)

which ensures that p = p ^ .

This way, the auxiliary ordered distributions p  and p , together with the
construction for the deterministic majorisation cones provide the full 
construction of the probabilistic cones. However, it is important to note
that when considering entanglement and coherence theories, the roles of
the future and past majorisation cones are reversed, and this should be
taken into account.

5.5.4 Volumes of entanglement majorisation cones

Finally, here we present the methods used to obtain the isovolumetric
sets for entanglement cones, as discussed in Section 5.3.3. Additionally,
we plot these curves for systems of unequal dimensions to compare with 
the case of equal dimension.

Consider a uniform Haar distribution of pure states in a composed space ∣ψ} ∈ H n  ® H m  with N  ≤  M . The partial tracing induces a measure 
in the space of reduced states, p  = Tr2 ∣ψ} (ψ ∣, characterised by the
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Figure 5.17: Isovolumetric sets fo r  entanglement 3 ×  M  bipartite systems. The density P3,m  (Λ) of Schmidt coefficients of pure states for 
qutrit-quMit systems depends heavily on the dimension M  of the second system. Panels (a-d) and (e-h) present the isovolumetric lines 
for past, incomparable and future regions and the density of the states for M  = 6 and M  = 30, respectively. Note that for larger M  the 
density P3,m  is more and more concentrated around the regions close to the centre [compare (d and (h)]. This affects the subset of states
with large future volume, making it smaller [(c) and (g)] as well as the set of states with large past volume, enlarging it [(a) with (e)].

distribution of eigenvalues Λ = { Λ 1, . . . , λ ∖  } of the reduced state [172]:

where δ  and θ  are the Dirac delta and Heavyside step functions, respec
tively. The normalisation constant is given by

(5.61)

where Γ is the Gamma function. Before we continue with our discussion,
let us first understand the role played by all factors in Eq. (5.60). As
previously mentioned, C χ , ^  is the normalisation. The delta function
ensures that the spectrum sums to one (is normalised), whereas the 
step function will guarantee that it is positive. Now, notice that the first
product (capital pi notation) essentially does not influence the behaviour 
of the distribution for N  = M  and introduces the repelling of the faces 
of the probability simplex otherwise, as it goes to zero whenever Λ z∙ = 0 
for any i . The second product is responsible for the repelling from
distributions with any two entries equal, since it goes to zero whenever
λ ∣ = A j for any i ≠  j .

Sampling from the P n ,m distribution, ordinarily done by generating 
state vectors | ψ ) ∈ H^ m which would be computationally prohibitive 
for large M , can be achieved using only O  (N ) random numbers for any 
dimension of the secondary system. It has been demonstrated in Ref. [166]
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that the distribution P n ,m is precisely the Laguerre unitary ensemble 
generated by Wishart matrices of size N  and parameter M  [175] and, 
in turn, generated using a tridiagonal method containing only O  (N ) 
random real numbers [176], which indeed allows one to study the P n ,m
distributions for arbitrary high-dimensional ancillary systems.

The procedure for generating the isovolumetric lines for the majorisation
cones with a given distribution, P n ,m , proceeds as follows:

1. Generate a sample of n  sets of eigenvalues { Λ ι , . . . ,  Λ n } taken from 
the distribution P n ,m using the tridiagonal method.

2. Consider regularly spaced grid of points S  in a single chamber of 
the full probability simplex (e.g., p i  ≥  p 2 , . . . , p d) in order to 
avoid repeated counting (achieving N ! decrease in operations)

3. For each p  ∈ S  consider its majorisation cones T  (p ) and divide S 

into S i ≡ { Λ ,∙ ∈ T (p ) } .
4. This way we arrive at the approximations of the volumes of the 

three regions,
V ,  ≈  b l ,

n

where |X  | denotes the number of elements in a set X .

We applied this method for N  = 3 with M  = 3, displayed in the main text 
of Fig. 5.14, and additionally with M  = 6 and 30, as shown in Fig. 5.17. 
These two cases show the significant dependence of the isovolumetric 
lines on the size of the environment.

5.6 Concluding remarks

In this chapter, we investigated the structure of the thermodynamic 
arrow of time by analysing thermal cones and their behavior under
different conditions. By dividing the space of energy-incoherent states 
into the past, the future, and the incomparable region, in analogy with
the future, past, and spacelike regions of Minkowski spacetime, we 
identified thermal cones as regions of the probability simplex that encode
the achievability of state transformations under thermal operations. We
specifically focused on energy-incoherent states in the presence of a 
thermal bath at a finite temperature and in the limit of temperature going
to infinity, fully characterising and carefully analysing the incomparable
and past thermal cones in both regimes. Additionally, we identified 
the volumes of the thermal cones as thermodynamic monotones and 
performed a detailed analysis of their behavior. Our results can be 
applied directly to the study of entanglement, as the order defined on 
the set of bipartite pure entangled states by local operations and classical
communication is the opposite of the thermodynamic order in the limit 
of infinite temperature. In this context, the future thermal cone becomes
the past for entanglement, and the past becomes the future. Furthermore, 
a similar extension can be drawn to coherence resource theory.

There are several potential research directions for generalising and ex
tending the results presented in this chapter. One possible avenue is to 
expand the analysis beyond energy-incoherent states to encompass the
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full space of quantum states. While available tools for this purpose are 
comparatively scarce [149, 173, 177], various techniques can be employed 
to construct coherent thermal cones under both Gibbs-preserving and 
thermal operations for qubit systems, as shown in Fig. 5.15 and explained 
in Section 5.4. Additionally, it would be interesting to explore an equiva
lent construction of the past and incomparable regions for continuous 
thermomajorisation. Extending our analysis to this setting could provide 
further insight into the structure of the thermodynamic arrow of time 
for memoreless processes.

Finally, an extension that includes many non-interacting subsystems
(possibly independent and identically distributed) could be done by 
defining an appropriate function to analyse the behavior of the thermal 
cones. While our investigation focused on single subsystems, such an 
extension could be useful in exploring the behavior of thermodynamic 
quantities in a broader range of physical systems.



6Memory-assisted Markovian 
thermal processes

Information has become ubiquitous in thermodynamics. It all started 
with Maxwell's seminal inquiry [178]: what would happen if we had knowl
edge of a system's state? The ramifications of this hypothesis led to potential 
violations of the second law of thermodynamics and a century-long 
puzzle [179, 180]. Ultimately, it was found that thermodynamics imposes 
physical restrictions on information processing [181, 182], resulting in
the development of frameworks devoted to incorporating information
into thermodynamics [35- 37, 183—185]. A crucial concept at the inter
section between these two fields is memory, a thermodynamic resource 
for storing, processing, and erasing information. In particular, memory 
effects can bring numerous advantages, including enhanced cooling [186], 
generation of entanglement [187, 188] or improved performance of heat 
engines and refrigerators [189- 191]. However, realistic quantum mechani
cal systems are open and governed by non-unitary time evolution, which
encompasses the irreversible phenomena such as energy dissipation,
relaxation to thermal equilibrium or stationary non-equilibrium states,
and the decay of correlations [52, 53]. Hence, assumptions like weak
coupling, large bath size, and fast decaying correlations are commonly 
made in modelling such systems, thus neglecting memory effects. This
raises the question of how memoryless processes get modified when
system-bath memory effects become non-negligible, i.e., how to assess 
and quantify the role of memory in thermodynamic processes [192].

As we have seen in Chapter 4, the resource theory of thermodynamics
is a relatively recent framework allowing one to address foundational 
questions in thermodynamics. By relying on the notion of thermal
operations it offers a complete set of laws for characterising general state
transformations under thermodynamic constraints. The downsides of 
this formalism are twofold. Firstly, it focuses only on snapshots of the 
evolution, making it hard to discuss how the processes are realised in 
time. Secondly, it may require precise control over the system and the
bath. The first problem was addressed by developing a hybrid framework
that reconciles resource theory and master equation approaches [59,
142], where the concept of a Markovian thermal process was introduced.
This new set of operations refines the notion of thermal operations by
encoding all relevant constraints of a Markovian evolution. The second 
problem was partially addressed in Ref. [150] by introducing the concept 
of elementary thermal operations, i.e., a subset of transformations that can 
be decomposed into a series of thermal operations, each acting only on two 
energy levels of the system. Such decompositions offer a method to bypass
the need for a complete control over interactions between the system
and the environment, and the approach was recently generalised to also
include catalytic transformations [193]. While elementary operations 
require only a limited control, they still rely on non-Markovian effects,
and so the question of quantifying memory effects in the resource theory 
of thermodynamics remains open.

In this chapter, we make a step towards bridging the gap between thermal
operations and Markovian thermal processes for energy-incoherent
states by introducing and investigating memory-assisted Markovian thermal
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Figure 6.1: M emory-assisted Markovian thermal processes. Schematic representation of the general setting. (a) Initially, the main system
(large blue circle) is coupled to a heat bath at inverse temperature β  (small red circles) and their interaction is Markovian, so that the bath
is in thermal equilibrium at each moment in time. (b)-(e) Then, the control is extended to parts of the environment (small blue circles 
with blue background) that do not instantaneously thermalise to equilibrium after interactions with the system, and can thus lead to 
non-Markovian dynamics of the main system.

processes (MeMTPs). These are defined by extending the Markovian 
thermal processes framework with ancillary memory systems, allowing 
one to interpolate between memoryless dynamics and the one with 
full control. More specifically, we demonstrate that energy-incoherent 
states achievable from a given initial state via thermal operations can be 
approached arbitrarily well by repeatedly interacting the main system 
with a memory that is initialised in a thermal equilibrium state (and 
therefore is thermodynamically resourceless) via an algoritheoremic 
procedure composed of Markovian thermal processes. Physically, this 
can be seen as a partial control over the bath degrees of freedom, where 
the bath can be thought of as a large, discrete, collection of smaller 
thermal units, and one can control the interactions of the main system 
with a small number of thermal subsystems (see Fig. 6.1).

Following this idea, we introduce a family of memory-extended Marko
vian thermodynamic protocols that require minimal control and are valid 
for any temperature regime. In the infinite temperature limit, we prove 
that our protocol can arbitrarily well simulate any state transition that 
can be achieved via thermal operations. More precisely, our first main 
result states that when memory grows and the number of interactions 
goes to infinity, the full set of states achievable by thermal operations 
can be reached by MeMTPs. We also provide analytic expressions for 
the convergence rates, which scale either polynomially with the number 
of degrees of freedom or exponentially with the number of memory 
subsystems. Moreover, based on strong numerical evidence, we propose 
a conjecture for a more accurate approximation of arbitrary state trans
formation (i.e., converging faster with the growing size of the memory) 
through sequences of truncated versions of our protocol. Our second 
main result extends these considerations to the finite-temperature regime. 
Here, we first show analytic convergence of our MeMTP protocol to a 
particular subset of state transformations that can be achieved by thermal
operations. These include all the so-called β -swaps, as well as ^ -cycles,
which form a thermodynamic equivalent of cyclic permutations. Then, 
based on numerical simulations, we conjecture that actually an arbitrary 
state reachable via thermal operations can be obtained using a proper 
sequence of truncated protocols.

With these results at hand, we then proceed to discussing their applica
bility. First, we explain how to assess the role played by memory in the 
performance of thermodynamic protocols by investigating work extrac
tion in the intermediate regime of limited memory. We thus interpolate



6.1 Thermal operations vs Markovian thermal processes 85

between the two extremes of no memory and complete control, and 
quantify environmental memory effects with the amount of extractable 
work from a given non-equilibrium state. Second, we consider the task 
of cooling a two-level system using a two-dimensional memory charac
terised by a non-trivial Hamiltonian. This example represents a minimal 
model requiring the manipulation of two two-level systems. Various 
experimental proposals are available across distinct platforms suitable 
for realising this specific model. Such platforms encompass quantum 
dots [194, 195], superconducting circuits [196, 197], and atom-cavity sys
tems [198]. We then clarify that all transitions achievable via thermal 
operations can be performed using a subset of thermal operations that 
only affect two energy levels at the same time. This may seem to con
tradict the results of Refs. [150, 151], where it was proven that thermal 
operations constrained to just two energy levels of the system are not 
able to generate all thermodynamically allowed transitions. We resolve 
this apparent contradiction by noting that in our case we require the 
control over two levels of the joint system-memory state, and not just the 
system state. Finally, we discuss the behaviour of free energy during a 
non-Markovian evolution, explaining the role of the memory as a free 
energy storage.

The chapter is structured as follows. First, in Sec. 6.1 we compare the 
frameworks of thermal operations and Markovian thermal processes, and 
then introduce the central notion of this chapter, the memory-assisted 
Markovian thermal processes. Next, in Sec. 6.2, we describe the protocol 
that employs thermal memory states to approximate non-Markovian 
thermodynamic state transitions with Markovian thermal processes. We 
then explain how this approximation convergences to the full set of 
transitions achievable via thermal operations as the size of the memory 
grows. Section 6.3 contains discussion and application of our results. 
Finally, in Sec. 6.6, we conclude and provide outlook for future research.

6.1 Thermal operations vs Markovian thermal 
processes

Thermal operations (TOs) framework as discussed in Chapter 4 uses mini
mal assumptions on the joint system-bath dynamics by only assuming 
that the joint system is closed and thus evolves unitarily, and that this uni
tary evolution is energy-preserving. Since there are no further constraints
on U , arbitrarily strong correlations can build up between the system and 
the bath, and one can expect non-Markovian memory effects to come into 
play. At the same time, from the perspective of control theory, generating
an arbitrary TO may require very complex and fine-tuned control over 
system-bath interactions [150].

Markovian thermal processes (MTPs) framework [59, 142], on the other 
hand, uses typical assumptions of the theory of open quantum systems 
(weak coupling, large bath size, quickly decaying correlations, etc.) [52], 
to argue that the system undergoes an open dynamics described by a 
Lindblad master equation [68, 69, 139]. Since the dynamics generated by 
an MTP arises explicitly from a Markovian model, there are no memory 
effects. Also, as shown in Ref. [59], the universal set of controls that
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Figure 6.2: Thermal operations vs Markovian thermal processes. Sets of states that a three-level
system with an equidistant energy spectrum E =  (0 , 1 , 2) and prepared in an energy- 
incoherent state p =  (0 .7 , 0 .2 , 0 .1) (depicted by a black dot • ) can be transformed to [green 
region T + (p )] or transformed from [blue region C - (p )] by (a) thermal operations and (b) 
Markovian thermal processes with respect to inverse temperature β  = 0 .3. In (c) we show
the overlap of sets of achievable states via TOs (dark green) and M TPs (light green). The 
thermal state of the system is depicted by a black star at the intersection of the dashed lines.

allows one to generate any incoherent state transformation achievable via 
MTPs consists only of two-level partial thermalisations. These transform
the populations of two energy levels, i and j , in the following way

P i +  P i
P i →  (1 -  λ )p i +  Λ  —  - γ i , (6.1a)∏  +  7 j

P i +  P i
P i →  (1 - λ )p j  +  λ - r p γ j , (6.1b)∕ ! +  Pj

where Λ  ∈ [0, 1] .

The set of states T+ro(p ) achievable via thermal operations from a given 
incoherent initial state p  can be fully characterised using the notion 
of thermomajorisation. The so-called future thermal cone T tro (p ) (see 
Chapter 5) is a convex set that consists of at most d ! extreme points, the 
construction of which was given in Corollary 5.1.1 (see Fig. 6.2a for an
example with a three-level system). On the other hand, the set of states
T+mtp(p ) achievable via Markovian thermal processes from a state p  was
recently characterised using the notion of continuous thermomajorisation.
The future Markovian thermal cone T,mtp(p ) is not convex (as illustrated 
in Fig. 6.2b for a three-level system), but Theorem 4.4.2 provides a 
construction of its extreme points using sequences of two-level full 
thermalisations (i.e., transformations from Eqs. (6.1a)-(6.1b) with Λ  = 1). 
As can be seen in Fig. 6.2c, Timtp(p ) C  T tro (p ) and the difference between
these two sets of thermodynamically accessible states arises purely from
memory effects.

6.2 Bridging the gap with memory

We begin this section by explaining the main building block of this work, 
namely the notion of memory-assisted Markovian thermal processes.
Then, we demonstrate how energy-incoherent states achievable from a
given initial state p  via thermal operations [i.e., any q ∈ C J ° (p )] can be 
approached arbitrarily well using memory-assisted Markovian thermal
processes with large enough memory. We will start by simplifying the
problem and showing that it is sufficient to only consider the achievability 
of the extreme points of C ∣o (p ) . Next, we will introduce MeMTP protocols
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that will serve us to approach extreme points of C τ° (p ) using MTPs 
acting on the system and memory state, p ® γ m  . Finally, we will analyse 
the performance of these protocols, i.e., we will show how well they 
approximate the desired transformations as the size of the memory N  

grows. Due to structural differences, we will do this separately for the
infinite temperature limit and the case of finite temperatures.

6.2.1 Memory-assisted Markovian thermal processes

In this chapter, our objective is to interpolate between the two extreme
regimes characterised by arbitrarily strong and no memory effects, as
described within the TO and MTP frameworks. To accomplish this, we 
will concentrate on the more restrictive MTP framework and extending 
it by explicitly modeling memory effects by bringing ancillary systems
in thermal states that will be discarded at the end. More precisely, we 
consider MTPs acting on a composite system consisting of the main 
d -dim ensional system in a state p  and an N -dimensional memory system 
prepared in its thermal state y_M (i.e., given by Eq. (4.3) with H e replaced 
by the Hamiltonian H m  of the memory system, which can be arbitrary). 
The thermality of the ancillary system M  is crucial, as this way we ensure 
that no extra thermodynamic resources are brought in unaccounted, and 
the only role played by M  is to bring extra dimensions that can act as 
a memory. As already explained in the introduction, this can also be 
viewed as having control over the small N -dimensional part of the bath.
Formally, we define the following set of quantum channels.

Definition 6.2.1 (Memory-assisted MTPs). A quantum channel E  is
called a memory-assisted Markovian thermal process (MeMTP) with memory
o f size N , i f  it can be written as

E (p ) = TrM [E m t p (p ® p M )] , (6.2)

where EM TP is a Markovian thermal process acting on the original system
extended by an N -dimensional ancillary system M  prepared in a thermal 
state ~y∖ ∕l .

As already mentioned, in this chapter we will focus on transformations
between energy-incoherent states. Our aim is to show that the sets of 
states achievable from a given p  via memory-assisted MTPs interpolate 
between T ,mtp(p ) (for N  = 1) and T j ° (p ) (for N  →  ∞ ). As a final note,
observe that this framework can be formally related to a particular kind
of catalytic transformations [56, 88]. This is because the ancillary memory
system can always be thermalised at the end of the process and this way
be brought to the initial state.

Interpolating between extreme regimes

Arrows between distributions represent the existence of specific
thermodynamic transformations, whose existence is determined by
partial-order relations: thermomajorisation > β for thermal opera
tions and continuous thermomajorisation for Markovian thermal
processes. Our results demonstrate that the gap between these two
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frameworks can be bridged with the use memory-assisted MTPs
employing ancillary memory systems of growing dimension N  and
prepared in thermal states.

6.2.2 Simplification to extreme points

We start by recalling the following notion that is crucial for our analy
sis.

Definition 3.3.6. (^ -ordering). Let p and γ  be a probability vector and 
its corresponding thermal Gibbs distribution. The β -ordering o f p is defined 
as the permutation n p  that arranges the vector (p i / y i , . . . , p d ∕^pd) in a
non-increasing order, i.e.,

P β = (pn—m ........Pn—w )  ■ (3.28)

Each permutation belonging to the symmetric group, π  ∈ <§a, defines a 
different β -ordering on the energy levels o f the Hamiltonian H  [see Fig. 3.8].

The d-dimensional matrix representation of n p  will be denoted by Π p , 
i.e., Π p p = p P .

The future thermal cone T tτ° (p ) is a polytope with at most d ! extreme 
points, one for each possible β -order π . We will denote them by p n 
(in particular it means that p n r  = p ). Now, we will use two crucial 
observations. First, in Ref. [150] it was shown that

q ∈ T+to(p ) ⇒  q ∈ T+τo (p " ^ ) , (6.3)

meaning that all states with a β -order π  that can be achieved from p  via 
thermal operations can also be achieved starting from p n . And second, it
was shown in Ref. [59] that

[q ∈ T + o (p ) and π q = π p ]  ⇒  q ∈ T+mtp(p ), (6.4)

meaning that within the same β -order as the initial state, the subsets of
states achievable via TOs and via MTPs do coincide. As a result, if one 
can construct memory-assisted MTPs that reach all the extreme points
of T tτo(p ), then one can also get to every state in T tτo(p ) via MeMTPs. 
This is done by simply first transforming p  to a given extreme point p n 
of 3+to(p ), and then using MTPs to get from p π to every state with a β -order π  in T tτo(p ) .
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In order to quantify how well a given state in T tτ° (p ) can be approximated, 
we will use the total variation distance defined by

(6.5)

From the discussion above, it should be clear that if we can construct 
MeMTP protocols approximating every extreme point with an error at 
most e , then

(6∙6)

A particular subset of extreme points of 3 +τo(p ) that we will investigate 
in more detail is given by those extreme states that can be achieved via
ft
sequences of β -swaps. A β -swap ∏p can be seen as a thermodynamic 
analogue of a population swap between levels i and j  [150]:

(6∙7)

with E i ≤  E j  and 1 ∖ ( ∕ 7 ) denoting the (d -  2) ×  (d  -  2) identity matrix 
on the subspace of all energy levels except i , j . Note that in the infinite 
temperature limit (β  = 0), the above recovers a transposition on levels i 
and j , which we will simply denote by ∏ ,∙y. In this limiting case, all extreme 
points of T+τo (p ) can be obtained by sequences of transpositions (that is 
because an extreme point in that case is of the form ∏p  for a permutation 
matrix ∏ , and every ∏ can be constructed from transpositions).

For finite temperatures, a β -swap transforms p  into an extreme point 
of p n if the ^ -orders π p  and π  differ only by a transposition of adjacent

ft
elements [61, 150]. In other words, it happens for ∏ p . when π p  (i ) = 
n p  (j) ±  1. More generally, a sequence of such non-overlapping β -swaps 
will also produce an extreme point of T tτo(p ), and so a total number 
of extreme points that can be achieved by sequences of β -swaps for 
dimension d  (including the starting point) is given by F (d  +  1), where 
F (k ) is the k -th Fibonacci number [199]. Finally, we will also make use 
of the notion of ^ -cycles that we now define. For a state p , consider a 
k -dimensional subset of energy levels { i ι , . . . ,  ijc} neighbouring in the β -order, i.e., n p  (i j + 1) = n p  (i j ) +  1. Denote by π  a cyclic permutation 
on this subset, i.e., either π ( i j ) = ij + 1 mod k , or π ( i j ) = i j - 1 mod k . Then, 
a thermal operation mapping p  to its extreme point p n  is called a β - 
cycle, if ∏ '  = ∏ ∏ p  (here ∏ , ∏ '  and ∏p  denote matrix representations of 
permutations π , π '  and π p ). To emphasise that a given β -cycle acts on k  

levels, we will sometimes refer to it as a β -k-cycle.

6.2.3 Memory-assisted protocols

The basic building blocks of all our protocols are given by two-level 
elementary thermalisations that are formally defined as follows.

Definition 6.2.2 (Two-level thermalisations). Consider a system in a state
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p with the corresponding thermal state γ . Then, an MTP transformation

(6.8)

is called a two-level thermalisation between levels i and j , and the correspond
ing matrix acting on probability vectors will be denoted by Tp. Moreover, if  
π p (i ) = n p (j) ±  1, then T ij is called a neighbour thermalisation.

(a) (d)

(c) (f)

Figure 6.3: Simplest example using 
connected vessels analogy. Continuous
(thermo)majorisation on d -level proba
bility vectors is equivalent to a task of re
distributing the content of -ordered ves
sels that are connected pairwise. Adding
a memory in a Gibbs state is then akin 
to multiplying glasses -  one empty and 
one full glass become N  pairs of full and
empty glasses. The process involves five
steps, read from top to bottom and left to
right, which represent the simplest pro
tocol that allows shifting more than half 
of the liquid from  full to empty glasses. 
The final distribution after the protocol 
is applied is (3/ 8 , 5/ 8) .

Let us note that the importance of neighbour thermalisations and the 
reason we employ them in our protocols stems from the fact that their 
sequences produce the extreme points of the Markovian thermal cone 
T MTP [59]. Intuitively, one can expect that in order to approximate extreme
states of T j ° (p ) using MeMTPs, one should get to the extreme points of 
T+mtp(p  0  y ), and these can be achieved by neighbour thermalisations
of the composite system-memory state.

Before delving into the full details of our protocol for approximatingβ -swaps, let us start with a high-level description to provide some insight
into our investigation. We begin with the simplest case of a two-level 
system and a two-dimensional memory, drawing an analogy between 
continuous (thermo)majorisation and connected vessels (see Fig. 6.3 for 
a schematic representation). Considering two vessels—one filled with 
liquid and one empty—the most one can do when they are connected is 
to equalise the levels of the liquid between them. However, by adhering 
to the simple schematic provided in Fig. 6.3, it is possible to exceed this 
intuitively unbeatable limit.

The sequence in Fig. 6.3 should be read from panels (a) to (f), in a 
top-down and left-to-right manner. We begin with four vessels: two are
half-filled and two are empty. We can connect these vessels in pairs, thus
equalising the fluid levels. The first two steps involve connecting the
half-filled vessels sequentially to the first empty vessel. Likewise, the next
two steps connect both initially half-filled vessels to the second empty 
one. The final step, which involves equalising the fluid levels in pairs, is 
analogous to thermalising the memory. An astute reader can confirm 
that 5/8 of the total fluid ends up in the vessels that were initially empty, 
thereby surpassing the 1 /2 limit.

We now describe our proposition for a MeMTP protocol approximating
the β -swap ∏ . between the ∕ -th and y'-th energy levels of the main system. 

It involves a sequence of N 2 two-level thermalisations of the state of
the composite system (see Fig. 6.4), which includes the main system
and a memory starting at thermal equilibrium, i.e., a state p 0  y M . In 
particular, we focus on the populations [p 0  γ m ]n( ∕ - i ) + ι , . . . ,  [p 0  y M ]ni 
corresponding to the ι -th level of the main system and similarly for the 
y’-th level. The protocol can be split into a sequence of N  rounds 
with k  = 1, . . .  , N  consisting of N  steps each (shaded area in Fig. 6.4). In 
the k -th round, we select the entry [p 0  y M ] (̂i- i ) + ⅛  and thermalise it 
sequentially with all the levels corresponding to the level y of the main
system:

R kl)(p 0  y  m ) :=
' n ∖
∏  T( i- i )N + k, (j - 1)N + l )ιp 0 γ M ) .

V = 1 )
(6.9)
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Figure 6.4: β -swap protocol. A  two-level subsystem of a generically d-dimensional system, 
represented by blue and red squares, is extended by an N -dimensional memory represented 
by grey squares. The composite 2N -dimensional system undergoes N  rounds of processing, 
where the fc-th round involves N  sequential two-level thermalisations of the first N  entries 
with the (N  +  fc)-th entry (represented by the shaded colour around the squares). After the
final thermalisation step, the memory can be discarded.

ft
Note that if n p (ι ) = n p (j ) ±  1 (i.e., the ^ -orders of p  and Πt,.p  differ by a
transposition of adjacent elements), then all thermalisations performed 
are neighbour thermalisations. Using the above, we can now define the
action of the truncated protocol P ( ;A

p  (!;)(p  ® γ  m ) := r n  )  ◦ ∙ ∙ ∙ ◦ r (!;)(p  ® γ  m ) ∙ (6.10)

The final step is to decouple the main system from the memory using a
full thermalisation T  of the memory system M , which acts on a general 
joint state Q  as:

(6.11)

fi
Thus, the full protocol approximating a β -swap Πh is given by

(6.12)

We will also employ more general protocols that aim at approximating
the transformation of the initial state p  into an extreme state of T tro (p ) 
given by p n  . Denote matrix representations of ^ -orders of these states 
by Π p  and Π '  = Π Π p  for some permutation matrix Π . Moreover, let 
us decompose Π into neighbour transpositions with respect to p , i.e., 
we write Π = Π imj m ∙ ∙ ∙ Π ∕ 1 j1 with every consecutive transposition Π⅛⅛
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changing the β -order of the state ∏⅛- 1 jk- 1 . . .  ∏ ∕ 1 j1 p  only by a transposition 
of adjacent elements. Then, we define the following two protocols to 
approximate p n  :

(6.13a)

(6.13b)

Note that, by construction, all two-level thermalisations performed in 
the above protocols are neighbour thermalisations.

6.2.4 Achieving extreme points of T+γo for β =  0

We are now ready to state our main results concerning the power of 
memory-assisted Markovian thermal processes in the infinite tempera
ture limit. Let us recall that we focus on a d-level system and an N -level 
memory in energy-incoherent states represented by probability distri
butions p  and γ m  . Since β  = 0, the thermal state of the memory is 
described by a uniform distribution with every entry equal to 1/N . 
We start with the following lemma, the proof of which can be found in 
Section 6.5.2 (with the necessary background on the mathematical tools 
used presented in Section 6.5.1).

It is well known that any permutation of d  elements can be decomposed 
into a product of at most d  transpositions or (2) neighbour transposi
tions. Therefore, by employing Lemma 6.2.1, we can demonstrate that 
an arbitrary permutation can be achieved using a composition of our 
approximate protocols.

Theorem 6.2.2 (Memory-assisted permutation). In the infinite tempera
ture limit, β  = 0, and for an N -dimensional memory, Π  can be approximated 
by the MeMTP protocol P π as follows:
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appearing in the definition o f P π in Eq. ( 6.13a):

Proof. From the definition of P ∏  and Lemma 6.2.1 we get

= [π⅛⅛ +  e ( l  - π⅛⅛)] ∙ ∙ ∙ [π ι ' i 7 i  +  e ( l  - π ≈ 1 7 i ) ] P ∙ (6.20)

Clearly, the leading term is given by Π p , whereas the next leading term, 
proportional to e , is given by e ∆p . All higher order terms scale at least 
as e 2, so are of the order o (N - 1/ 2). □
The above theorem can then be directly used to obtain the bound on how 
close one can get from a given p  to any state q ∈ T + ° (p ) using MeMTPs 
with N -dimensional memory. We explain how to derive such a bound 
for a given p  in Section 6.5.2, whereas below we present a weaker, but 
much simpler, bound that is independent of p .

Corollary 6.2.3. Consider states p and q ∈ C + o  (p ). Then, in the infinite 
temperature limit, β  = 0, and for  an N -dimensional memory, there exists a 
MeMTP protocol P  such that

with

(6.21)

(6.22)

Proof. First, define Π as a permutation that changes the β -order of p  to that 
of q . In other words, the β -order of ∏p  is n l j . Then, using Theorem 6.2.2, 
we have that

p π (P ® ∏M ) = r  ® ∏M (6.23)

with

(6.24)

where and < denote the equalities and inequalities up to o (N - 1/ 2) . In 
the above, we have used the triangle inequality and the fact that one can 
always decompose Π into at most d (d -  1)/2 neighbour transpositions. 
Next, from Eq. (6.4), we know that there exists an MTP protocol P '  

mapping Π p  to q . Using the contractiveness of the total variation distance 
under stochastic processing, we then have

δ (P ' (r ) , q ) = δ (P ' (r ) , P ' (Π p )) ≤  δ (r , Πp ) < d (√ -  1) . (6.25)
2 y π N

We thus conclude that by choosing P  = (P '  ® Pm ) ◦ P π, Eqs. (6.21)-(6.22) 
are satisfied. □

Furthermore, we present the following conjecture for a better approxi
mation of arbitrary permutations.
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Figure 6.5: Convergence rates at infinite temperature. Log-log plot of the total variation 
TO

distance δ  between the extreme points p π  ∈ T+ ) (p ) and the states obtained from p via the 
algorithm P π (left panel) and P π (right panel), as a function of the memory size N . Here, 
p =  (0 .37 , 0 .24, 0 .16, 0 .11, 0 .07, 0 .05), β  = 0, and different colours correspond to families of 
extreme points p π with different convergence rates (from bottom to top p π is obtained from 
p via a β-6-cycle, a composition of a β-6-cycle with a β-5-cycle, and so on). All convergences 
behave as O (N - 1/ 2), which can be seen by the comparison with the function 0 .4/VN  

(dashed black line), with multiplicative advantage for P π over P π.

Conjecture 6.2.1 (Improved convergence). In the infinite temperature limit,
β  = 0, and for an N -dimensional memory, P π gives a better approximation
of a permutation Π  than P Π  :

δ  (Π p , q) ≤  δ  (Π p , q ) , { b 2 b }

where q and q are defined via

P π(P ® ) = V ® ∏M , p π (p  ® ∏M ) = 9 ® ∏M ∙ (6.27)

The conjecture is solidified by strong numerical evidence (see Fig. 6.5
for an example considering d = 6). We note that the convergence is 
better, but the overall character of O (N - 1/ 2) is still preserved. More 
specifically, we observe that for permutations given by β -k -cycles with 
k  ≤  d , there is no advantage to removing the intermediate thermalisations 
(i.e., no advantage of P π over P π). The advantage already appears for 
a composition of β -d-cycle with β -(d -  1)-cycle, leading to the β -order 
(d , d - 1, 1, . .  . , d - 2) (here, without loss of generality, we assumed that the 
initial β -order is given by (1, 2 , . . . ,  d )). In general, the advantage grows 
with the number of composed ^ -cycles (see Fig. 6.5, where different 
colours and markers correspond to different length compositions of ^ -cycles). In particular, we verified that for a permutation (16)(25)(34), 
which is composed of ̂ -cycles of length 6 through 2 (or 15 = (2) neighbour 
transpositions), both P π and P π converge to the actual extreme point 
Π p . Surprisingly, we find that all the other possible permutations fall 
within the convergence advantage class of one of the aforementioned β -cycle compositions. This includes, in particular, the cases when the 
last β -cycle in the sequence is incomplete, i.e., it is shortened by the final 
subsequence of β -swaps of any length.
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6.2.5 Achieving extreme points of T+ro for β  ≠  0

Our second main result concerns the power of memory-assisted Marko
vian thermal processes at finite temperatures. We start with the following 
generalisation of Lemma 6.2.1, the proof of which can be found in 
Section 6.5.2.

Theorem 6.2.4 (Memory-assisted β -swap). For a finite temperature, β  ≠  0, 
and for an N -dimensional memory described by a trivial Hamiltonian (so that 
its thermal state is ), can be approximated by the MeMTP protocol 

as follows:

with

(6.29)

Byusingthe above theorem,one canapproximate witharbitraryprecision 
a total of F (d  +  1) extreme points achievable by a composition of non
overlapping β -swaps (recall that F (k ) is the fc-th Fibonacci number). 
However, since F (d  +  1) ≤  d ! for d  ≥  3, not all extreme points of 3 +r o (p ) 
can be obtained this way. Nevertheless, we conjecture that using MeMTP 
protocols P π that are composed of blocks imitating β -swaps, just without 
intermediate thermalisations, one can reach all the extreme points of

Conjecture 6.2.2 (Extreme points of 9+to). Consider a state p and the 
extreme point of T tro (p ) given by p π', with matrix representations of β -orders 
o f these states satisfying Π '  = Π Π p  for  some permutation Π . Then, for  a 
finite temperature, β  ≠ 0, and for  an N -dimensional memory described by a 
trivial Hamiltonian (so that its thermal state is ), the MeMTP protocol 
P π acts as

p π(p  ® ∏ m ) = 9  ® ∏M , (6.30)

with
δ (q , p n ) — ∞ 0 . (6.31)

The conjecture is solidified by the following two evidences. First, we can 
actually prove it in the following special case.

Theorem 6.2.5 (Memory-assisted β -3-cycle). Consider a state p with 
entries i ι , /’2 , /3 being neighbours in the β -order (i.e., π p (i fi) = n p  (i 2 ) +  1 = 
π p  (13) +  2), and the extreme point o f T+° (p ) given by p π', with matrix 
representations o f β -orders o f  these states satisfying Π '  = Π Π p  for  Π  = 
Π,∙1 i3 Π,∙2 i3. Then, for a finite temperature, β  ≠ 0, and for  an N -dimensional 
memory described by a trivial Hamiltonian (so that its thermal state is ), 
the MeMTP protocol P π acts as

P π(P  ® ∏M ) = <1 ® ∏M (6.32)
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Figure 6.6: Convergence rates at finite temperature. Log-log plot of the total variation 
distance δ  between the states obtained from p via the algorithm P ∏ 1∕  and the corre
sponding extreme points p π ∈ T +(TO) (p ) , as a function of the memory size N . Here, 
p = (0 .37 , 0 .24, 0 .16, 0 .11, 0 .07, 0 .05), β  = 0 .1, and different colours correspond to extreme 
points p π  with matrix representation of the β-order π  given by Π = Π ∕y ∏p . For all curves, 
the convergence is better than O (N - 1/ 2), as can be seen by the comparison with the limiting 
line 1∕√ π N  for β  = 0 (dot-dashed black line).

with
(6.33)

The proof of the above theorem can be found in Section 6.5.2, and 
potentially the same proving techniques can be applied to higher-order 
cycles. This would then provide a general method for simulating ^ -cycles, 
as well as any combinations of non-overlapping ^ -cycles, with arbitrary 
precision through MeMTPs.

The second evidence is based on extensive numerical simulations. Let us 
consider any state p  and a set of permutations defined by a recurrence 
formula

(6.34)

with 1 ≤  j  ≤  d  -  i and assuming the starting condition ∏ 0d  = 1. Note 
that ∏ 1, d - 1 represents a full (>-d-cycle, ∏,∙zd + 1 - ι  a composition of i  ^ -cycles 
of length from d to d +  1 -  i , and finally ∏ d , 1 is a permutation which fully 
reverses the β -order of p . For each such permutation, we have considered 
the action of the protocol P ∏ i> (p ) and its convergence to the respective 
extreme point p n with ∏ = ∏ i j∏p  (recall that ∏ is a matrix representation 
of π ). In each case, we have observed the convergence of the form from 
Eq. (6.31) that is better than N - 1/ 2. Results for an exemplary state in 
dimension d = 6 are presented in Fig. 6.6, where a total of 15 different 
curves are shown to lie below the N - 1/ 2 limit and diverging from it.

Finally, based on Theorem 6.2.4, the proof of Theorem 6.2.5, and numerical 
evidence, one can reasonably strengthen Conjecture 6.2.2 to make the 
following statement on the convergence:

(6.35)

where A (Π ) = O  (1) is a permutation-dependent exponent.
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Figure 6.7: e-deterministic work extraction with M eM TPS . Transformation error e  as a 
function of the work W  extracted from a two-level system with energy splitting Δ prepared 
in a thermal state at temperature 1∕β s  smaller than the environmental temperature 1∕β  
with parameters β s  Δ = 2 and β Δ = 1. System-environment interactions are modelled by 
TOs (dashed black curve), MTPs (dashed red curve) and memory-assisted Markovian
thermal process with a memory of size 2, 4 ,  8, 16, 32, 64 and 128, respectively.

6.3 Discussion and applications

In Section 6.2, we demonstrated a method of achieving an arbitrary state 
from the future cone of TO using MeMTPs through MTP operations 
acting upon the system extended by memory, initiated in the thermal
state γ . In the following sections, we will apply our protocol to study
information-based quantum thermodynamic processes, such as work 
extraction and cooling. Next, we revisit the question of the sufficiency of
two-level control for TOs. Finally, we provide a brief discussion of the 
behaviour of the free energy and correlations with the progression of
our protocol. This sheds light on how non-Markovian effects arise in the 
memory-assisted protocol.

6.3.1 Work extraction

We start our discussion with e -deterministic work extraction, which 
typically involves an out-of-equilibrium system S , a thermal bath at 
inverse temperature β , and a battery B  initially in an energy eigenstate 
E o [55, 200]. The aim is to increase the energy of B  by an amount W  by 
exciting it from E o to E ι  = E o +  W  with a success probability 1 -  e . The 
optimal error e  for a given W  can be obtained via thermomajorisation 
condition for transformations given by thermal operations [55] and
through continuous thermomajorisation relations when transformations 
are given by Markovian thermal processes [142]. Our framework allows
one to interpolate between the two extremes by including a memory 
system with varying dimension N .

Consider a two-level system S  and a two-level battery B  with energy 
levels (0 , Δ ) and (0 , W ), respectively. Assume that the initial state of the 
joint system is given by p SB = p  ® (1, 0) . One can then select the extreme 
point p g β  ∈ T+ ro(P sb) from the future thermal cone of the composite
system for which the following relation is satisfied with the minimum
value of e r o :

(6.36)
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Figure 6.8: Energy level structure. Schematic diagram of a two-level system, consisting of
a main system and a memory with energy gaps £ 5 and , respectively. The energy gap
of the composite system is such that it can be selectively coupled to the thermal bath.

In other words, p B B is an intermediate state from which one can achieve 
minimal error for extracting W  work from p  via any thermal operation.
We can now define Π  as a permutation that maps the matrix represen
tation of the initial β -order of p SB to the final β -order of p B B . Then, by 
using the algorithm P π, we can transform p SB into a state q SB that 
approximates p BB . Finally, due to Eq. (6.4), we can use standard thermo- 
majorisation to find the minimal value of e ⅛ for which the state q SB can 
be transformed to γ  ® (e ^ , 1 -  £n ) via MTPs. Note that e ⅛ then corre
sponds to the probability of failure of extracting work W  from p  using a 
memory of size N . Numerical simulations of this procedure (see Fig. 6.7) 
show that as N  grows, e ⅛ decreases, allowing us to conjecture that 
lim^ → ∞  €n = £to . However, note that the convergence is not uniform: 
it is the slowest around W  = 0 and the kink at W  = 1∕β  log(l +  e - δ̂) .
Nevertheless, Fig. 6.7 clearly shows that even a small size memory can 
significantly improve the quality of the extracted work.

6.3.2 Cooling a two-level system using a two-dimensional 
memory with nontrivial Hamiltonian

As a second application of our findings, we consider the task of cooling
a two-level system with the aid of a two-dimensional memory. The
setup involves a two-level system with energy gap E s , extended by a 
memory system with energy gap E m . The joint system's energy level
structure is depicted in Fig. 6.8. We assume that the difference between 
energy gaps is such that it allows one to selectively couple with the bath,
i.e., E s  -  E m ≠  E m . This enables us to separately address transitions |01) θ  110) , |00) θ  111} together with two coupled pairs of the form 10i} θ  11i } and |i0 }  θ  |i 1} . We will refer to these operations thermalise
these levels as operation 1, 2, 3 and 4, respectively.

Let us now assume, for simplicity, that the system starts in an excited 
state extended by Gibbs memory, p ® γ m  with p ,∙ = δ∏. If we consider the
main system alone with access only to MTPs, one can cool it down only 
to the ambient temperature. In this case, the system will reach thermal 
equilibrium, and the resulting distribution is given by

(6.37)

However, by implementing our protocol, which can be realised as a
sequence of operations, 1 →  2 →  3 →  4 and discarding (thermalising)
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the memory, we arrive at P (p  ® γ m ) = q ® γ m  with

The distance of this state from the Gibbs state γ s  at ambient temperature 
in terms of the 1-norm is given by

(6.38)

(6.39)

which is positive for every non-zero value of E m and E s  ■ This means that
despite non-triviality of the memory's spectrum, our simple memory- 
extended protocol achieves a cooling advantage over Markovian pro
cesses.

6.3.3 Two-level control is sufficient for thermal operations

In Ref. [150] it has been proved that there exist thermodynamic state 
transformations that cannot be decomposed into the so-called elementary
thermal operations, i.e., thermal operations acting only on two levels of the 
system at the same time. Then, in Ref. [151], for any dimension d , an explicit 
final state q ∈ T tr o (p ) was given such that it cannot be achieved (even 
approximately) starting from the ground state p = (1, 0 , . . . ,  0) using 
convex combinations of sequences of elementary thermal operations. 
More precisely, given the energy spectrum of the system with E i+ i  ≥  E i, 
this final state is given by

(6.40)

with β  ≥  β c rit such that 1 -  ∑ t∙=2 e = 0. It was then proven by the
authors of Ref. [151] that there exists e  >  0 such that any q , achievable 
from p  satisfies δ (q , q , ) ≥  e .

Given the above, one might conclude that being able to selectively 
couple to the bath just two energy levels at once is highly restrictive
and does not allow one to induce all the transitions possible via general 
thermal operations. This conclusion, however, would be incorrect, as the
restriction only arises when one is limited to coupling only two levels
of the system at a given time. When one is allowed to bring an auxiliary
N -level system in a thermal equilibrium state γ > s , then the ability to
selectively couple to the bath just two energy levels of the joint system
allows one to induce all transitions of the main system possible via 
thermal operations as N  →  ∞ . Crucially, the operation

E (p) = p  ® y M (6.41)

is a thermal operation for every N . Thus, E  followed by a sequence of 
elementary thermal operations on the joint system, followed by discarding 
the system M  at the end, can induce any energy-incoherent state transition 
of the system possible via general thermal operations. In other words,
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Figure 6.9: Convergence to states inaccessible via elementary thermal operations. Log-log
plot of the total variation distance δ between the state g  from  Eq. (6.40) and the state 
obtained from p =  (1 , 0 , . . . ,  0) via the algorithm P π,∕ , as a function of the memory size N . 
Left: systems with energy spectra E 1∙ = i with d = 3 , . . . ,  10 (bottom to top) and for 
β  = 1.1 log(2) > ^crit. For all presented dimensions the convergence is better than 1∕(2 p N ) 
(black dashed line). Right: systems w ith energy spectra (0 , E 1 , E 2, 1) taken from  a grid 
with interval Δ = 1/64 (translucent blue lines) for β  = 1.1 ∙ βcr⅛. The red lines represent 
the extreme cases of convergence, while the thick blue line is the average convergence. 
Note that the top red line almost agrees with 1∕(2 p N ) (black dashed line), which well 
approximates the expected convergence for β  = 0 and agrees with the fact that it is obtained
for almost completely degenerate levels.

elementary control over two energy levels at a given time is sufficient to 
generate all thermodynamically possible transitions if we allow ancillary 
thermal systems.

We illustrate the above with the following numerical examples, show
ing that our MeMTP protocol P n ’  (which consists of only two-level 
operations) is able to transform p  into q '  that approximates q arbitrarily 
well (i.e., δ (q ' , q ) →  0 as N  →  ∞ ). In order to focus attention, we 
chose a constant β  = 1.1 ∙ β crit. First, we considered systems of vary
ing dimension d , up to dmax = 80, and fixed the energy structure to 
E i = i , corresponding to quantum harmonic oscillator. We observed 
that the convergence for all these dimensions scales according to the
predictions from Conjecture 6.2.2, which can be seen in the left panel of
Fig. 6.9 for d  = 3 , . . . ,  10 and memory sizes up to N  = 28. Moreover, in
order to ascertain that the convergence does not depend on the energy
structure of the system, we fixed d = 4 and considered energy levels (0, E ∖ , E 2 , 1) with E 1 <  E 2 taken from a grid with spacing Δ E  = 2 - 6,
resulting in 1953 uniformly distributed points. For each of these points,
we have considered the protocol with memory size up to N  = 28. As 
demonstrated in the right panel of Fig. 6.9, it turns out again that the 
convergence, independently from the energy structure, is better than 
1 ∕y ∕N , in accordance with Conjecture 6.2.2.

6.3.4 Non-equilibrium free energy evolution

To understand how non-Markovian effects arise in the memory-assisted 
protocol, we will now examine the evolution of the system and memory
during the protocol P (lf ) . More precisely, let us denote the joint state of 
the system and memory after the π -th two-level thermalisation step of 
the protocol by p ^ . Similarly, let p (n) and p ^  denote the reduced states
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β = 0

Figure 6.10: Evolution of non-equilibrium free energies and correlations. Non-equilibrium free energies of the main system [(a) and 
(e)], the memory [(b) and (f)], and the joint system [(c) and (g)], as well as the mutual information between the system and memory [(d)
and (h)], as a function of the step number n  of the protocol P l⅛'). Here, the composite system consists of a three-level system initialised in 
a state p = (0 .7 , 0 .2 , 0 .1) and a 16-dimensional degenerate memory prepared in a thermal (maximally mixed) state, and the plots are 
presented for two inverse temperatures, β  = 0 and β  = 0 .5.

of the system and memory after the n -th step. Then, in the spirit of the
analysis performed for elementary thermal operations in Ref. [193], we 
will examine the behaviour of the following entropic quantities. First, we
will look at the relative entropy between and the thermal state of the 
system γ , , . d v (n )

D  ( √ " )∣∣γ ∖ = ∑  p (n )  log '' , (6.42)

which is a thermodynamic monotone, as it decreases under (Markovian) 
thermal operations, and is directly related to the non-equilibrium free 
energy [89]. We will also look into the behaviour of the analogous 
quantities for the joint system and the memory system. Moreover, to 
track the correlations that build up between the system and memory, we 
will investigate the mutual information between them, which is given by 

d (P sm ∣ P " ® Pm ) .

We use a three-level system and a 16-dimensional memory as an il
lustrative example. We consider the joint system undergoing a β -swap 
protocol P ( ! l )  for β  = 0 and β  = 0 .5. As shown in Figs. 6.10a and 6.10e, the 
non-equilibrium free energy of the main system initially decreases to a 
minimum, and then increases until it reaches a level that closely approxi
mates the target state (a swap/β -swap). It is important to note that this 
observed increase is only possible because of the presence of the memory
system. In contrast, note that the global non-equilibrium free energy
decreases after each step, as depicted in Figs. 6.10c and 6.10g. However,
during the process, a fraction of the main system's non-equilibrium free 
energy is transferred to the memory, which acts as a free energy storage. 
As such, it later enables the system to increase its local free energy again, 
hence allowing it to achieve the final state. More interestingly, the free 
energy of the memory, presented in Figs. 6.10b and 6.10f, exhibits a
comb-like structure consisting of d -  1 teeth with (d  +  1) steps each. 
Specifically, within the k -th tooth, the first d -  k  steps increase the free
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energy, while the remaining k  steps decrease it. Note that as long as the
memory is not thermalised, its non-equilibrium free energy does not go
to zero. However, for β  = 0, it approaches a value very close to zero, but
there are still correlations between the memory and the system, which 
are illustrated in Figs. 6.10d and 6.10e.

6.4 Alternative protocols realising equivalent
β -swap approximation

Let us revisit the truncated protocol gP>(≈7) with d-dimensional memory as
introduced in Section 6.2, where it was defined in Eq. (6.10). This protocol
is composed of d 1 2 two-level elementary thermalisations, denoted as ¾ .  
Each thermalisation T⅛ ∕ can be represented as a point (k ,  Γ) on a plane,
and an algorithm can be represented as an arrow pointing from the
previous thermalisation to the next one. For instance, we present in 
Fig. 6.11a the diagram of P  for d = 7.

Visually, it is obvious that we iterate through an entire column before 
shifting to the next one. In other words, all the ‘filled' levels are used 
sequentially to fill up the first ‘empty' level, and the same process is 
repeated for all the subsequent ‘empty' levels. Now, let us look at the two 
algorithms depicted in Fig. 6.11b and Fig. 6.11c. The action of the blue 
algorithm can be summarised in the following way, starting with i = 1:

1. Iterate through ∕ -th column, starting from the first unvisited point.
2. Iterate through ∕ -th row, starting from the first unvisited point.
3. Set i  →  i  +  1 and go back to step 1 if any unvisited point remains.

The red algorithm can be most easily understood as the reverse of the 
blue one. Instead of decreasing the length of vertical and horizontal
stretches, they are gradually increased in the red algorithm. This allows
the red algorithm to be recursively implemented, taking into account 
gradually more and more levels of memory, as indicated by dashed lines. 
The protocol for d-dimensional memory is implemented by extending 
the d -  1-dimensional version with an additional row and column.

We furthermore investigated the cyan family, which mimics the blue 
algorithm and can be defined in the following manner:

1. Iterate through row or column, starting from the first unvisited 
point.

2. Repeat step 1. until no unvisited points remain.

(C)

Figure 6.11: Alternative protocols. Three different protocols are used to achieve equivalent
β-swap approximations. Each thermalisation is represented by a point on a plane, with an
arrow indicating the transition from one thermalisation to the next.
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Moreover, we considered orange family related to the cyan family with 
an analogous reversal as between blue and red:

For these algorithms, we find the following properties we have observed
from explicit implementation for a range of dimensions and inverse
temperatures β , but we have not been able to prove them analytically:

► All of the aforementioned algorithms acting on an initial state 
p  ® 7 rf result in the same state as P (p  ® γ d) .

► blue and red algorithms are slowest and fastest algorithms, respec
tive, according to the convergence to the β -swap with respect to 
the 1-norm.

► Each algorithm in the Cyan and Orange family provide slower and
faster convergence than the original algorithm P , respectively.
The statement reinforces the claims mentioned earlier and explains 
that the 1-norm between the intermediate states of the system and
the target state (the ^ -swapped counterpart of p  with β  = 0) is 
plotted in Fig. 6.12.

Figure 6.12: Algorithm convergence analysis. Convergence to the target state g  = (0 , 1) of 
different algorithms acting on the state p =  (1, 0) extended by memory with dimension 
d = 30. Note that all algorithms. Note that all algorithms finish at the same value of 
∖∖P -  <7 llι∙
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6.5 Derivation of the results

6.5.1 Regularised incomplete beta function

The content of this section is based on Refs. [201, 202].

Definition and properties

Figure 6.13: Regularised beta function. 
Plots of the regularised incomplete beta 
function as a function of (a) a and (b) b.

The finite-size corrections to a β -swap and its compositions are deter
mined by the cumulative distribution function (CDF) known as the 
regularised incomplete beta function. This function is closely related 
to the well-known beta function B (a ,  b ) and is widely used in deriv
ing our results. To provide the necessary background and present its 
key properties, we first recall the definition and properties of the beta 
function:

B (a , b ) = f a " 1(1 -  t )fc" 1 d t ,  (6.43)
Jo

with a , b  ∈ (C. The beta function relates to the gamma function in the 
following way

B (a , b )
τ ( q ) τ ( b )

Γ (a  +  b ) '
(6.44)

The incomplete beta function B x (a ,  b ) is defined by changing the upper 
limit of integration in Eq. (6.43) to an arbitrary variable, i.e.,

B x (a , b ) =
o

f a - 1(1 -  t )b- 1d t ' (6.45)

Finally, we define the regularised incomplete beta function I x (a ,  b ) (reg
ularised beta function for short) by normalising the incomplete beta 
function,

h  ' '  =  ⅜ f c f i '  4

We present plots of the regularised beta function for a few selected values 
of x  in Fig. (6.13).

Throughout this chapter, we assume that a , b  >  0 and 0 ≤  x  ≤  1. It 
is easily noted that I o (a , b ) = 0 , 11 (a , b ) = 1, and I o (a , b ) ≤  I x (a , b ) ≤  
I 1(a ,  b ), thus making it a proper CDF. Furthermore, for a ,  b ∈ Z , I x (a , b ) 
can be written in terms of a binomial function

I x (a , b ) = (1 -  x )b P  +  i  1 j x k  (6.47)

j=a ∖ J  ∕

From this equation, by using the geometric series and its derivatives, one 
can conclude that

I x (0, b ) = 1. (6.48)

Moreover, (1 -  x )b ∑  P  +  i  1 j x i = I x (a , b ) -  I x (n  +  1, b ) . (6.49)

j=ai ∖ J  )
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If a  = 1, then I x (1, b ) = 1 -  (1 -  x )fc and Eq. (6.47) simplifies to

(1 -  x )b + i  1j χi = 1 -  (1 -  x )b -  I x (n  +  1, b ) . (6.50)

The next two useful properties of I x (a ,  b ) are the symmetry relation

I x (a , b ) = 1 -  h - x (b , a ) , (6.51)

and the relation for an equal argument,

I χ ( β , a ) = 2 -⅛(1- x )  ®, , (6.52)

when 0 ≤  x  ≤  1/2. Finally, there are two recurrence relations which 
allow one to shift either of the arguments of the function by one,

γ a (1 — γ ∖b
I x (a ,  b ) = I x (a  +  1, b ) +  X  . 2  , (6.53a)

a b (a ,  v )
γ a f 1 — γ ∖̂

I x (a ,  b ) = I x (a ,  b  +  1) -  x  lp . 2  , (6.53b)
a b ( a ,  b )

I x (a ,  b ) = I x (a  +  1, b  -  1) +  X X> , (6.53c)
a b ( a ,  b )

v β - 1f 1 — χ }b
I x (a ,  b ) = I x (a  -  1, b  +  1) -  -  (  . (6.53d)

a b (a ,  b )

General relations involving the gamma function

Next, let us present general relations and properties of the gamma
function that are extensively used in our proofs. First, recall that for every
positive integer n

Γ (n ) = (n  -  1) !. (6.54)

Using the above, one can derive a simple formula for the following ex
pression that appears when dealing with the regularised beta function:

1 = Γ (2n ) = Γ (2n ) 2n  = 1 ∕ 2π ∖
n B (n , n ) n Γ (n )2 n Γ (n )2 2n  2 n  ' ‘

Other important functional equation for the gamma function is the 
Legendre duplication formula:

Γ (n )Γ^ n  +  2 J = 21- 2n √n Γ (2n ) .  (6.56)

The factorial terms can be approximated using Stirling's approximation

n ! = x ∕2n n  (1 +  O (π - 1)) . (6.57)

Asymptotic analysis

We will be interested in the asymptotic behaviour of the regularised
beta function. So, in this section, we introduce important relations and 
identities that will be useful for proving our main theorems. Let us begin
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by considering the regularised beta function I x (a ,  b ), where x  and b fixed. 
For a  →  ∞ , we have the following asymptotic expansion:

Note that O -term vanishes in the limit only if n  ≥  b . Furthermore, for 
each n  = 0, 1, 2, . .. If b = 1, 2 , 3, . . . , and n  >  b , the O -term can be omitted,
as the result is exact. In this work, Eq. (6.58) will be expanded up to the
second order. Specifically, for the values of a  = N , b  = 1/2, we have the 
following equation

where symbol hides the terms of the order O (x n /N 2) .

6.59)

Next, we will consider sums of the regularised beta functions over the 
second argument and their limit as a  →  ∞ . We start with

(6.60)

where we have used definitions of the beta function and the gamma 
function for integer arguments. Using Eq. (6.49), the above expression 
can be recast as

(6.61)

for 0 ≤  x  ≤  1/2.

Finally, using the asymptotic expansion from Eq. (6.58), we get

(6.62)

Thus, we see that this term vanishes in the limit of a  →  ∞ , and we find
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that the following sum vanishes in the limit:

a
lim V ,j I x (a ,  i +  1) = 0 .

π
(6.63)

i= 1

Moreover, we will need the following sum:

(6.64)

6.5.2 Proofs of Lemma 6.2.1 and Theorem 6.2.4

To prove Lemma 6.2.1 and Theorem 6.2.4, we will consider a composite sys
tem consisting of the main d-dimensional system and an N -dimensional
memory system. Without loss of generality, we can assume that the
main system is a two-level system with i = 1 and j  = 2, whose state is
described by unnormalised probability vector. We begin by deriving an 
expression that describes how the composite system evolves under the 
memory-assisted protocol P ( 12) . Next, to gain insight into the behaviour 
of the joint system as the memory size grows, we will prove the asymp
totic result. Finally, in the last subsection, we will show how this result 
implies the desired convergence rates.

Dynamics induced by two-level thermalisations

Consider a two-level system, described by a Hamiltonian H  = E-ι  ∣E 1 }(E 1 ∣ +  
E 2 ∣E 2 }(E 2 1 and initially prepared in an energy-incoherent state p = (b , c ), 
together with a memory system, described by a trivial Hamiltonian 
H m = 0 and prepared in a maximally mixed state = (1, . . . ,  1)/ N . 
The joint state r := p  ® of the composite system is then given by

(6.65)
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whereas the joint thermal distribution Γ := γ  ® is given by

(6.66)

For the sake of brevity, we introduce the rescaled Gibbs factors, which
will be used extensively in the proofs:

(6.67)

Under a series of two-level thermalisations, the joint state of the composite
system at the fc-th round is given by

(6.68)

(6.69)

(6.70)

with b ( 0 = b . Equations (6.69) and (6.70) can be understood by noting 

that during the fc-th round of two-level thermalisations, an additional c 

is added to the previous (fc -  1)-th entry and the resulting state is again
thermalised. By iterating this process for the first fc rounds, we can derive
a closed-form expression for the entries b ( fc and c ( N ) :

(6.71)

(6.72)

After N 2 rounds of two-level thermalisations, the composite final state 
r (N )  is given by

(6.73)

Infinite memory limit

Up till now, we have obtained a closed-form expression describing the ac
tion of the truncated protocol P ( 12) . In order to prove Lemma 6.2.1 and The
orem 6.2.4, the next step consists of decoupling the main system from
memory using a full thermalisation T :

(6.74)
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Since we are initially focused on demonstrating the asymptotic results,
our aim is to show that as N  approaches infinity, we achieve a β -swapι 

v ∖  f c ( N )

lim 1= 1 -  = c +  fr(1 -  e - ^ (E 2 - E l ) ) , (6.75a)
N  → ∞  N

γ N r (N)
lim ⅛ - i  = b e  - ^ (E 2 - E l ) . (6.75b)

To prove the limits in Eqs. (6.75a) and (6.75b), we will begin by using the
conservation of probability,

express

(6.76)

This allows us to the first limit as a function of the second:

(6.77)

We will now examine the non-trivial term on the right hand side of
Eq. (6.77). We start by using Eq. (6.49) to re-write the first term of c ( N )

appearing in Eq. (6.72) in terms of the regularised beta function

(6.78)

where we also used Eq. (6.51) to invert the arguments of the regularised 
beta function. Thus, using (6.63), we conclude that

Taking into account the second term of c ( N )  appearing in Eq. (6.72), one

can immediately evaluate the sum

(6.80)

and therefore obtain that

(6.81)

Substituting this result to Eq. (6.77), we prove that

(6.82)

As a result, in the limit of N  →  ∞ , the protocol P (12) achieves a β -swap.

Finite memory convergence rates
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To complete the proofs of Lemma 6.2.1 and Theorem 6.2.4, we will now 
analyse what the approximation error is for a finite size of the memory N . 
This will tell us how quickly the initial state convergences to a β -swap as 
a function of N . First, we define two functions governing the convergence

(6.83a)

(6.83b)

which allow us to write the final state of the system as

(6.84)

Next, we will asymptotically expand Eq. (6.83a). The starting point is to 
reduce the double sum into one, then convert the binomial sums into reg
ularised beta functions and use its properties given by Eqs. (6.53c), (6.52) 
and (6.55):

(6.85)

Now we expand Eq. (6.85) up to second order using Eq. (6.59). Recall that 
such an expansion is an approximation up to terms of the order O (x n /N 2) 
(where x  will be given by 4Γ 2 1Γ 12), which will be dropped since our 
final approximation will be up to the order o (x n /N 3/ 2) or o (1∕N 1/ 2) for 
finite and infinite temperatures, respectively. Then, the gamma functions 
appearing in the expansions are simplified using Eq. (6.56) and Eq. (6.55). 
Finally, using Stirling's approximation [Eq. (6.57)], we arrive at

As the last step, we simplify the above expression for Γ 12 >  1/2 (finite 
temperature case) by using the fact that Γ 12 = 1 -  Γ 21 , to arrive at

(6.87)
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The infinite-temperature limit, β  = 0, is similarly analysed by using 
Eq. (6.85) and plugging Γ 12 = Γ 21 = 1/2. In this case, the scaling is 
slightly different and is given by

(6.88)

The other half of estimating the convergence rate stems from considering 
Eq. (6.83b). Proceeding in the same manner as before, we re-write it as

(6.89)

Again, we expand Eq. (6.89) up to second order using Eq. (6.59). Then, 
the gamma functions appearing in the expansions are simplified using 
Eq. (6.56), the remaining ones are simplified by using Eq. (6.55). Finally, 
using Stirling's approximation [Eq. (6.57)], we arrive at

For Γ 12 >  1/2 (finite temperature case), we use the fact that Γ 12 = 1 -  Γ 2 1 , 
to simplify the above as

where -  hides the o -terms. The infinite-temperature limit, β  = 0, is 
obtained by using Eq. (6.89) and plugging Γ 12 = Γ 21 = 1/2. This yields 
the following convergence

(6.92)

with the expression for G  modified to (n N ) 1/ 2.

As a final step to prove Lemma 6.2.1 and Theorem 6.2.4, we calculate 
explicitly the state of the primary system after the protocol P (12) . This is
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done by substituting the results for E and F  to Eq. (6.84), yielding

(6.93)

fi
Thus, the distance between q and the target Π,'l 2 p is given by 

δ ( ∏ 2p , q }  = ∖ bG  -  c E ∖.
For β  = 0 case, the above gives

S (π ξ 2 ” ■ = ,  . + ÷ " ' I  ,

whereas β  ≠  0 case, it gives

(6.94)

(6.95)

(6.96)

These prove Lemma 6.2.1 and Theorem 6.2.4 after going to the notation
used therein, i.e., b →  p 1 , c  →  p 2 , Γ 12 →  Γ 1 and Γ 21 →  Γ 2 . □

Strengthening Corollary 6.2.3

Corollary 6.2.3 deals with a very general approach to bounding the
distance between the target state p n  and its approximation obtained from 
p  via the MeMTP protocol P π. However, it can be improved by taking 
into account the set of indices on which the permutation acts.

Corollary 6.5.1. Consider states p and q ∈ C + o  (p ). Then, in the infinite 
temperature limit, β  = 0, and for  an N -dimensional memory, there exists a
MeMTP protocol P  such that

with

(6.97)

(6.98)

where { /’1 , . . . ,  ily } ⊂ { 1, . . . ,  d} is a subset o f indices neighbouring in the 
β -order, n p (f ) +  1 = π p (∕y+ 1), such that ∏  = ∏ i= 1 Π j iki with f , k i ∈ { /1 , . . . , i i ' } -

Proof. First, we consider a target state to be an extreme point p n  such that 
the β -order Π p ∙  ≡ Π *  can be decomposed into the maximal number of 
d ' (d '  - 1) ' 2 neighbour swaps on the levels /’1 through i d'. Taking explicitly 
Eq. (6.19) from Theorem 6.2.2, one finds that

δ  ⅛ n', r *) Σ ∣p⅛- P h ∣ +  o ( n - 1' 2 ) , (6 J9 )2 y n N  k,t v ,
k ≠ l
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where for convenience we used P ∏ (p  ® η > j) = r *  ® . We note that
the above expression in fact provides a general upper bound for any 
permutation Π on the aforementioned subset of d '  levels -  defining 
P ∏ (p  ® η M ) = r  ® η M we find that

δ  (∏p , r ) ≤  e .  (6.100)

Now, there are two cases to be considered. First, take a state q which is 
in the future of the approximation point r , q ∈ C ^ τ p (r ), from which it
follows that

3 6  ∈ MTP : δ  (q , Q(r )) = 0 . (6.101)

Otherwise, q is not in the future cone of r .In this case, we first note that 
there exists a ball B (r , e ' ) 3 Π p  with radius e '  ≤  e  with respect to δ (∙ , ∙). 
Thanks to the planarity of the boundaries ∂C +λ t p (r ) and ∂C+λ t p (∏p ) 
when restricted to a fixed β -order, we can consider the extreme case

q ∈ ∂ C +p τ p (∏p ) ⇒  3 r '  ∈ ∂ C +i τ p (r ) : δ (q , r ' ) ≤  e ' ≤  e  (6.102)

and the same argument applies for any q ∈ C +i τ p (Π p )∖C +i τ p (r ), thus 
concluding the proof.

The bound presented in Corollary 6.5.1 can be further improved by taking
into account the possibility of dividing the set { i ↑ , . . .  , i >̂ } into subsets 
that are not mixed at any step when considering the decomposition of ∏ q

into neighbour transpositions. Finally, we point out that, in agreement
with Eq. (6.101), there will exist such states q that are attainable exactly, 
andmoreover,theirvolume willincrease togetherwiththesizeofmemory 
N .

Proof of Theorem 6.2.5

To prove Theorem6.2.5, we willconsideracomposite systemconsistingof 
the main d-dimensional system and an N -dimensional memory system.
Without loss of generality, we can simply assume that the main system
has three levels with = 1, = 2 and /3 = 3, and its state is described
by an unnormalised probability vector p = (a ,  b ,  c ) . The Hamiltonian 
is then given by H  =  ∑ 3= 1 E i ∖E t ){E i |, while the memory system is de
scribed by a trivial Hamiltonian = 0 and prepared in a maximally 
mixed state = (1/N , . . . ,  1/N ). The joint state of the composite system, 
r := p  ® , is then given by

N  tim es N  tim es N  times

and the joint thermal state is given by

r  = [e ~ β p 1, . . . ,  e  ~ β p 11 e  ~ β p 2, . . . ,  e  ~ β p 21 e ~ β p3, . . . ,  e  ~ β p3 ] , (6.104)

where Z  = ∑3= 1 e ^ Ei .



114 6 Memory-assisted Markovian thermal processes

As before, the starting point consists of understanding how the joint 
state of the composite system changes under the action of the composite
protocol P ^ 3) ◦ P χ 3∖  whose action is summarised in two steps:

1. Two-level thermalisation between second and third energy levels.
2. Two-level thermalisation between first and third energy levels.

The final state r (N ) is then given by

(6.105)

where π  = π 13π 2 3 . Note that due to probability conservation, character
ising the second and third entries of Eq. (6.105) is sufficient.

After the first protocol P 23, the second energy level remains “untouched”
and, as a result, its entries are given by Eq. (6.71) (with Γ 12 and Γ 21

replaced by Γ 23 and Γ 32, respectively). The other two entries are obtained 
in a similar way as Eqs. (6.69)-(6.70). The action of the protocol generates 
a recurrence formula that allows us to write the last entry as

where c ⅛ is given by

(6.107)

Since, without loss of generality, we assumed that p  has ^ -ordering (123), the proof boils down to demonstrating that P π(r ) sends p  to the 
following extreme point

(6.108)

Therefore, we need to prove the following limits

Proof of limit (6.109a)

(6.109a)

(6.109b)

We start by recalling that b (^ ) is given by:

(6.110)
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Comparing Eqs. (6.110) and the right-hand side of (6.109a), we see that in 
order to prove Eq. (6.109a), we need to prove the following two limits:

(6.111)

and

(6.112)

We begin by proving Eq. (6.111). First, we rewrite this expression as:

(6.113)

We can evaluate the second sum in Eq. (6.113) as follows:

(6.114)

Thus, substituting Eq. (6.114) into Eq. (6.113), we obtain

(6.115)

Using Eq. (6.63), we conclude that the second term in Eq. (6.115) vanishes
in the limit of N  →  ∞ , and therefore

(6.116)

so that we have proved Eq. (6.111).

To prove Eq. (6.112), we begin by manipulating it so that we can express
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it in a simpler form:

Applying Eq. (6.49) to transform the first term of Eq. (6.117) into a
difference of regularised beta functions, and then using its asymptotic 
expansion, we obtain

(6.118)

Next, we consider the second term in Eq. (6.117), which can be directly 
evaluated as

(6.119)

where in the last line we used the asymptotic expansion of I x (a ,  b ) to
approximate the difference between regularised beta functions. Collecting 
all the terms, we conclude that the limit is given by

(6.120)

Therefore, combining the above with Eq. (6.116), we get the desired 
limit:

(6.121)
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Proof of limit (6.109b)

As before, in order to prove Eq. (6.109b), we will also need to prove two
other limits. Recall that c ( N )  is given by

c j - ι ,

(6.122)

with

(6.123)

Since Cj - ι does not depend on a , the problem reduces to showing that

(6.124)

and

(6.125)

Let us start by proving Eq. (6.124). First, we manipulate cS''') and rewrite 
it in terms of the incomplete beta function as follows:

(6.126)

Using Eq. (6.64), we obtain

(6.127)

Thus, collecting all the terms, we get the desired limit

(6.128)

The final step is to show that the remaining limit from Eq. (6.125) is zero,
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namely
1 N  N - 1

n⅛  n ' ■ 2  2  ' 1 3 « - , = 0 . (6.129)
k = 1 1=0

Since Ck - l has two contributions, one needs to show that both limits go to
zero. Treating each separately, we first write the first term of Eq. (6.123) 
in terms of the incomplete beta function,

(6.130)

where we could bound by one because the incomplete beta function is a 
CDF. Thus,

and this term goes to zero for '  31 ≤  1 /2. This can be seen from the
asymptotic expansion of I p31 (N ,  N ) .

Finally, we need to show that the second term of Eq. (6.123) is zero. To 
do so, we first re-write the second term as

(6.132)

Notice that the above expression can be bounded by

and the right-hand side of equation Eq. (6.133) can be expressed in terms 
of the regularised beta function as follows:

(6.133)

Now, note that the first term goes to zero when ' 31 <  1/2, whereas the
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Since

second term is also bounded by one as

(6.134)

(6.135)

we conclude that the resulting limit is zero. Therefore,

(6.136)

6.6 Concluding remarks

In this chapter, we proposed a novel approach to investigate memory ef
fects in thermodynamics by introducing the concept of memory-assisted 
Markovian thermal processes. These were defined by extending the 
framework of Markovian thermal processes with ancillary memory sys
tems brought in thermal equilibrium states. Our construction allowed 
us to interpolate between the regime of memoryless dynamics and the 
one with full control over all degrees of freedom of the system and 
the bath. Using a family of protocols composed of Markovian thermal 
processes, we demonstrated that energy-incoherent states achievable 
from a given initial state via thermal operations could be approximated 
arbitrarily well via our algorithmic procedure employing memory. Fur
thermore, we analysed the convergence of our protocols in the infinite 
memory limit, finding polynomial and exponential convergence rates 
for infinite and finite temperatures, respectively. In the infinite tempera
ture limit, we provided analytic convergence to the entire set of states 
accessible via thermal operations. For finite temperatures, we proved 
the convergence to a subset of accessible states and, based on extensive 
numerical evidence, we conjectured that a modified version of our pro
tocol can realise arbitrary transitions achievable via thermal operations 
with an exponential convergence rate that grows with memory size. Our 
model-independent approach can be seen as a significant step forward 
in understanding ultimate limits of the Markovian evolution in general,
which should be contrasted with the model-specific approaches to the
so-called Markovian embedding [203- 205]. On the other hand, it may be
seen as far less general than the approach taken in Ref. [206], where our 
work would correspond to a step towards simulating arbitrary evolution 
with Markov-Stinespring curves.

We also explained how our results can be employed to quantitatively as
sess the role of memory for the performance of thermodynamic protocols.
In this context, we discussed the dependence on the memory size of the
amount and quality of work extracted from a given non-equilibrium state.
However, the method can be used as well to investigate other thermo
dynamic protocols, such as information erasure or thermodynamically 
free encoding of information [138]. Furthermore, we revealed that all
transitions accessible via thermal operations can be accomplished using a
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restricted set of thermal operations that exclusively affect only two energy 
levels (of the system extended by a memory) at any given time. These 
findings carry important implications, not only for the development of 
efficient thermodynamic protocols, such as optimal cooling and Landauer 
erasure, but also for the exploration of novel avenues of research focused 
on characterising memory effects in thermodynamics. Finally, we also 
commented on the role played by the memory system as a free energy 
storage that enables non-Markovian effects.

Our results offer many possibilities for generalisation and further re
search. First, one can try proving that the future thermal cone for 
memory-assisted Markovian thermal processes agrees with that of ther
mal operations in the limit of infinite memory, lim^ → ∞  C(MeM TP = ^ to , 

as suggested by Conjecture 6.2.2. This can be built upon the proofs for β -swaps (Theorem 6.2.4) and β -3-cycles (Theorem 6.2.5) presented in
this work. Second, one may also attempt to show that the convergence
of the proposed protocols P π and P π is optimal with respect to the 
memory size. In other words, one could investigate the upper-bound 
on the power of memory-assisted Markovian thermal processes with 
a given size of memory N . Third, from a more practical point of view, 
it may be worthwhile to explore MeMTPs involving finite and infinite
memory with non-trivial energy level structure. The practical relevance
of this direction can be understood by considering the introduction of
non-degenerate splitting of the levels for the full system, which would 
allow the level pairs to be addressed independently.

In addition to the above, there are also less clear-cut goals for future efforts, 
such as expanding the studies beyond energy-incoherent states into the 
full range of quantum states. Furthermore, while our work focused on a
single main system, an interesting avenue for future work could be to
investigate many non-interacting subsystems. This extension could shed
light on the combined consequences of finite-size and memory effects,
providing valuable insights into the behaviour of larger, more complex
systems. Specifically, characterising such effects could help to identify 
strategies for improving the efficiency of thermodynamic protocols in
practical applications. Finally, one can also consider memory composed 
of many equivalent systems (such as a multi-qubit memory), and analyse 
the potential challenges arising from energy-level degeneration in such a 
setting.

Finally, the feasibility of the introduced algorithm can be studied from
a control perspective, following the approaches outlined in [207, 208] .
The first approach introduces the notion of a space-time trade-off, which
refers to the minimal amount of memory and time steps required to
classically implement a given process. The second approach deals with 
control complexity, defining it as the number of levels a given operation 
non-trivially acts versus the time steps needed to implement that process.
o u r algorithm has specific time and memory requirements, namely 
N -dimensional memory and N 2 time steps. Furthermore, it is limited to
the simplest two-level processes at any given time, meaning its control 
complexity is as low as possible. Nonetheless, future work might explore 
variations of our protocol (or any of the variants presented in Section 6.4).
Such explorations could focus on enabling parallelisation of certain
steps by expanding available memory, thereby illustrating the space-time 
trade-off.



Fluctuation-dissipation relations 
for thermodynamic distillation 

processes

Almost two centuries ago, Robert Brown observed that pollen seeds 
immersed in water move randomly in erratic motion [209]. It was not 
until the 1905 papers by Einstein and Smoluchowski [210, 211] that 
scientists understood that this “Brownian” motion is induced by the 
bombardment of pollen particles by water molecules. Crucially, by noting 
that these collisions would also create friction for the particle being pulled 
through the fluid, Einstein realised that the two processes, fluctuations 
of particle's position and dissipation of its energy, have the same origin 
and thus must be related. Over the years, physicists generalised and 
formalised this observation into fundamental fluctuation-dissipation 
relations describing the behavior of systems driven out of equilibrium [13, 
212].

Now, it is well known that near-equilibrium, linear response theory 
provides a general proof of the fluctuation-dissipation theorem, which 
states that the response of a given system when subject to an external 
perturbation is expressed in terms of the fluctuation properties of the 
system in thermal equilibrium [13]. The theoretical description underlying 
the fluctuation-dissipation relations is usually expressed in terms of 
the stochastic character of thermodynamic variables. This approach is 
strongly motivated since it is experimentally viable [213, 214].

As introduced in the Chapter 4, the resource theory of thermodynamics 
aims to go beyond the thermodynamic limit and the assumption of 
equilibrium. It is often presented as an extension of statistical mechanics 
to scenarios with large fluctuations, referred to as single-shot statistical 
mechanics. [215, 216]. A natural question is then whether fluctuation- 
dissipation relations are present in such a resource-theoretic description. 
Although important insights have been obtained in trying to connect 
the information-theoretic and fluctuation theorem approaches [217, 218], 
they have, so far, not been explicitly related to dissipation. The tools 
required for the analysis of free energy dissipation in a resource-theoretic 
framework were developed in Refs. [100, 127, 219, 220], where the authors 
investigated irreversibility of thermodynamic processes due to finite-size 
effects. However, the relation between fluctuations and actual dissipation 
was not derived and, moreover, these results were obtained for quasi
classical case of energy-incoherent states. Thus, they were not able to 
account for quantum effects that come into play when dealing with even 
smaller systems, when fluctuations around thermodynamic averages are 
no longer just thermal in their origin.

This chapter pushes towards a genuinely quantum framework characteris
ing optimal thermodynamic state transformations and links fluctuations 
with free energy dissipation. We investigate a special case of state in
terconversion processes known as thermodynamic distillations. These are 
thermodynamic processes in which a given initial quantum system is 
transformed, with some transformation error, to a pure energy eigen
state of the final system. In particular, we focus on the initial system 
consisting of asymptotically many non-interacting subsystems that are 
either energy-incoherent and non-identical (in different states and with 
different Hamiltonians), or pure and identical. Within this setting, our
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main results are given by two theorems. The first one yields the op
timal transformation error as a function of the free energy difference 
between the initial and target states, and the free energy fluctuations in 
the initial state. This can be seen as an extension of previously derived 
results on optimal thermodynamic state transformations [100, 127, 219, 
220]. The second theorem provides a precise relation between the free 
energy fluctuations of the initial state and the minimal amount of free 
energy dissipated in the optimal thermodynamic distillation process. It is 
conceptually novel and does not form an extension of previously known 
results, and as such it constitutes our main contribution. Note that the 
second theorem employs the first one as one of the building blocks.

Our results allow us for a rigorous study of important thermodynamic 
protocols. First of all, we extend the analysis of work extraction to the 
regime of not necessarily identical incoherent states, as well as to pure 
states. By directly applying our main results, we obtain a second-order 
asymptotic expression for the optimal transformation error while extract
ing a given amount of work from the initial system. Moreover, we also 
verify the accuracy of the obtained expression by comparing it with the
numerically optimised work extraction process. As a second application,
we analyse the optimal energetic cost of erasing N  independent bits
prepared in arbitrary states. In this case, we obtained the optimal trans
formation error for the erasure process as a function of invested work.
The last application we consider is the optimal thermodynamically-free
communication scheme, i.e., the optimal encoding of information into 
a quantum system without using any extra thermodynamic resources. 
Applying our theorems gives us the optimal number of messages that
can be encoded into a quantum system in a thermodynamically free-way, 
which we show to be directly related to the non-equilibrium free energy 
of the system. This result can be interpreted as the inverse of the Szilard 
engine, as in this process we use the ability to perform work to encode
information. Furthermore, our results connect the fluctuations of free
energy and the optimal average decoding error. Finally, our findings also 
provide new tools to study approximate transformations and correspond
ing asymptotic interconversion rates. Here, we not only extend previous 
distillation results [100] to non-identical systems, but also to genuinely 
quantum states in superposition of different energy eigenstates.

The chapter is organised as follows. We start in Sec. 7.1 with a high-level 
description that can give a flavour of our investigations and explains the 
physical intuition behind them to a broad audience without the necessity 
to get into the technicalities of the framework we work in. We then intro
duce the central notion of this chapter namely thermodynamic distillation 
processes and adapt the information-theoretic quantities from Chapter 4 
to the scenario discussed here. In Section 7.3, we state our main results 
concerning the optimal transformation error and fluctuation-dissipation
relation for incoherent and pure states, discuss their thermodynamic
interpretation and apply them to three thermodynamic protocols of work
extraction, information erasure and thermodynamically-free commu
nication. The technical derivation of the main results can be found in
Section 7.5. Finally, we conclude with an outlook in Section 7.6. This way 
we prove a general fluctuation-dissipation relation for thermodynamic 
distillation processes.
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7.1 High-level description

Before formally stating the setting studied in this chapter, let us present 
a high-level description of our investigations. Our aim is to identify the 
fluctuation-dissipation phenomenon in the realm of resource-theoretic 
approach to thermodynamics. To do so, we will extract the main feature 
captured by the original works of Einstein and Smoluchowski: in order to 
obtain any ordered motion of a state of the system that is subjected to ran
dom forces, we necessarily need to dissipate energy that is proportional 
to the fluctuations of energy induced by these random forces. The main 
point of the resource theory of thermodynamics is to determine whether 
one state can be thermodynamically transformed into another. In our 
framework, we will examine the effect of the fluctuations present in the 
initial state of the system on the minimal amount of dissipation during a 
state transformation process. As we shall see at the end of this section, 
the proper fluctuating and dissipated quantity in the thermodynamic 
context will be given by the free energy of the system.

As a warm up, let us start with a simple example, where the goal 
is to draw work from a given system (this is indeed an example of 
a state transformation if one includes explicitly an ancillary weight
system). More precisely, consider a model system with a continuous,
non-degenerate energy spectrum with the ground state of energy E o = 0 
that is prepared in a probabilistic mixture p  of different energy eigenstates ∖E ) corresponding to energy E , i.e.,

∫ ∞

p  =  !  p (E ) ∖E )(E ∖ d E ,  (7.1)

0

where p (E ) is a probability density function describing the system's
distribution over energy levels. Our aim is now to use this model system 
with probabilistic (“fluctuating”) amounts of energy to make an almost
deterministic (“ordered”) change of energy of another system. More 
formally, we are interested in performing e -deterministic work W , i.e., 
in changing the state of the ancillary weight system from one energy 
eigenstate ∖ W o ) to another energy eigenstate ∖ W o +  W ) with probability 
1 -  e .

How can we achieve this? If the distribution p (E ) is vanishing for 
E  ∈ [0 , W ], then we can couple the two systems and transfer the amount 
of energy W  between them by simply shifting the entire distribution 
p (E ) down by W , while moving the weight system up by W  (see the top 
panel of Fig. 7.1). Similarly, if the bulk of p (E ) is localized far away from
the ground energy 0, we can try to perform an analogous protocol, but
this time we will fail with probability

e  = f  p (E ) d E ,  (7.2)

0

since the states with E  ∈ [0, W ] cannot be lowered by W , as they would 
need to to be lowered below the ground state.

To illustrate this more clearly, consider an important example of p (E )
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Figure 7.1: Transforming “fluctuating” to “deterministic” energy. Top: Despite fluctuations 
of energy, the lowest occupied state of the system is far away from the ground state, and so
deterministic amount of work W  can drawn from  it. However, W  is much smaller than 
the average energy content {E ) of the system. Bottom: accepting probability of failure e , 
one can extract deterministic amount of work approaching the average energy {E ) , with 
the loss proportional to energy fluctuations σ(E ) , where the proportionality constant is 
determined by e . Here, the initial distribution is assumed to be Gaussian with average {E ) 
and standard deviation σ(E ) .

given by a Gaussian distribution with a mean (E }  and standard deviation
o:

(7.3)

The importance of this example stems from the fact that in thermody
namics we are interested in total energy distributions of a large number
N  of particles, and results like the central limit theorem tell us that the
distributions of total quantities in such a case are approximated very 
well by Gaussian distributions. Of course, a Gaussian distribution is 
non-vanishing below the ground state energy 0, but as long the average
energy (E }  is far away from zero this can be neglected for the sake of our 
example. In the bottom panel of Fig. 7.1, we present how shifting down a 
Gaussian distribution by its mean (E }  decreased by a number of standard 
deviations x σ  results in an error e  = Φ ( - x ), where Φ is the cumulative
normal distribution function. Thus, for a fixed success probability of ex
tracting work W  we can extract the average energy content of the system, 
( E } , decreased by the quantity proportional to energy fluctuations σ . In
other words, in order to transform the fluctuating type of energy into 
(almost) deterministic one, we need to lose (dissipate) some of it due to 
fluctuations. This simple scenario gives an intuition for why fluctuations 
may be related to dissipation.

Of course, the toy example we analysed above does not account for 
many features of realistic scenarios. First of all, it deals merely with 
mechanical work, whereas in thermodynamics one also has access to 
a thermal bath and can use it to draw even more thermodynamical 
work. Second, when considering systems of many particles we do not 
deal with non-degenerate spectrum, but rather at each energy we have 
a corresponding density of states. As a result, one may not be able to 
simply shift the distribution down, as there may be less low energy
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states then high energy states. Next, in the analysed example we only 
considered the protocol of work extraction, which is a very particular 
type of a general thermodynamic state transformation that physicists are 
interested in. Finally, since we deal with quantum mechanics, within each 
degenerate energy subspace we may deal with coherent superposition of 
states that can constructively or destructively interfere. Hence, the picture 
gets even more complex and requires a formalism that can account both 
for coherent and incoherent contributions to fluctuations.

Despite these complications, our work extends the original intuition from 
the simple toy example to general quantum thermodynamic scenarios, 
including all the features described above. The crucial modification 
required is replacing the concept of average energy and its fluctuations 
(relevant in the case of mechanical systems) with the average free energy 
and its fluctuations (relevant for thermodynamic scenarios).To account 
for quantum systems prepared in arbitrary non-equilibrium states, one 
needs to use the non-equilibrium quantum generalisations of the classical 
expression for free energy, which also allows for the rigorous definition 
of free energy fluctuations. With these modifications in place, one can 
employ the above intuition to investigate general thermodynamic distil
lation processes that transform generic states with fluctuations of free 
energy into states with no free energy fluctuations (the equivalent of
"ordered energy" states). Specifically, we show that, for a fixed success
probability of transformation (1 -  e ), during such a process, the amount
of free energy dissipated must be proportional to the initial free energy 
fluctuations.

7.2 Setting the scene

7.2.1 Thermodynamic distillation processes

A thermodynamic distillation process is a thermodynamically free transfor
mation from a general initial system described by a Hamiltonian H  and 
prepared in a state p , to a target system described by a Hamiltonian H  

and in a state p  that is an eigenstate of H  .*  An e -approximate thermody
namic distillation process from (p ,  H ) to (p , f f ) is a thermal operation that 
transforms the initial system (p ,  H ) to the final system (p fin, H ) with p ∩n 
being e  away from p  in the infidelity distance δ ,

(7.4)

Here, we will study the distillation process from N  independent initial 
systems to arbitrary target systems, e.g., to N  independent target systems 
as illustrated in Fig. 7.2. In particular, we will be interested in the 
asymptotic behaviour for large N . Thus, our distillation setting is specified 
by a family of initial and target systems indexed by a natural number

* In fact, all of our results apply to a slightly more general setting with target states being pro
portional to the Gibbs state on their support, e.g. for p  =  ∣E k ) ( f i k∣ +  γ ^ + γ l ∣ĵ l ) ( f i 1∣,

where ∣E denotes the eigenstate of H  and γ ∣ is its thermal occupation.
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Figure 7.2: Thermodynamic distillation 
process. The arrow depicts the existence
of a thermal operation transforming N  
independent initial systems to N  inde
pendent target systems. The circles and
squares represent the initial and target
systems with each subsystem described 
by a different Hamiltonian and prepared 
in a different state.

N . For each fixed N , the initial system (p N , H n ) consists of N  non
interacting subsystems with the total Hamiltonian H n  and a state p N

given by

while the target system is described by an arbitrary Hamiltonian H n  and a 
state p n  = ∣E ∣,with ∣E ) being an eigenstate of Ef n  corresponding 
to some energy E . Note that since H n  is arbitrary, it does not need to 
describe N  particles; in fact, it can even be a Hamiltonian of a single
qubit.

A typical example of this setting is when initial and target systems are
given by copies of independent and identical subsystems. More precisely, 
in this case, the family of initial systems is given by H n  with = H  and 
pN  = p & N , while the family of target systems is given by N  subsystems, 
each with a Hamiltonian H  and in a state ∣E ⅛ }(E ⅛ ∣. One is then interested 
in the optimal distillation rate N /N  as N  tends to infinity. However, 
we will investigate a more general setting, allowing the subsystems 
to differ in both state and Hamiltonian, as long as the initial state is
uncorrelated.

7.2.2 Information-theoretic quantities

Before we proceed to present our results, let us introduce the necessary
information-theoretic quantities. For an initial system (p N , H n  ), we intro
duce the following notation for free energy and free energy fluctuations:

(7.6a)

(7.6b)

(7.6c)

We also introduce

(7.7)

(7.8)

which quantifies the amount of free energy that is dissipated in the 
distillation process, i.e., the free energy difference between the initial and
final states.
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Let us also make two final technical comments. First, we only consider
families of initial systems for which the limits of o2(F n )/N  and k3(F n )/ N  

as N  →  ∞  are well-defined and non-zero. Second, in what follows, we 
will use a shorthand notation with < and > denoting equalities and 
inequalities up to terms of order o ^ / N ) .

7.3 Optimal distillation error and 
fluctuation-dissipation relations

The first pair of our main results concerns thermodynamic distillation
processes from incoherent systems. The first theorem connect the optimal 
distillation error to the free energy fluctuations of the initial state of the 
system:

Theorem 7.3.1 (Optimal distillation error for incoherent states). For a
distillation setting with energy-incoherent initial states, the transformation
error e ⅛ o f the optimal e -approximate distillation process in the asymptotic 
limit is given by

(7.9)

where Φ  denotes the cumulative normal distribution function. Moreover, for
any N  there exists an e -approximate distillation process with the transforma
tion error e ⅛ bounded by

(7.10)

where C  is a constant from the Berry-Esseen theorem that is bounded by

0 .4097 ≤  C ≤  0 .4748. (7.11)

In such a distillation process, the minimal amount of free energy dissi
pated is related to free energy fluctuations via:

Theorem 7.3.2 (Fluctuation-dissipation relation for incoherent states).
The minimal amount of free energy dissipated in the optimal (minimising the
transformation error e ) distillation process from  identical incoherent states
asymptotically satisfies

where

and Φ - 1 is the inverse function of the cumulative normal distribution function 
Φ .

(7.13)

We prove the above theorems in Secs. 7.5.2 and 7.5.3, and here we will 
briefly discuss their scope and consequences. We start by noting that
combining Eqs. (7.9) and (7.12) yields the optimal amount of dissipated



128 7 Fluctuation-dissipation relations for thermodynamic distillation processes

free energy as a function of Δ F n  and o(F n  ) :

(7.14)

Now, for the analysed case of independent initial subsystems, free energy
fluctuations o(F n  ) scale as V N . Thus, we can distinguish three regimes,
depending on how the free energy difference between the initial and
target states, Δ F n , behaves with growing N :

(7.15)

The first case corresponds to the target state having much smaller free 
energy than the initial state (as compared to the size of free energy 
fluctuations). According to Eq. (7.9), the transformation error then ap
proaches zero in the asymptotic limit; while according to Eq. (7.14), the
amount of dissipated free energy F '̂ss -  Δ F n , i.e., up to second order
asymptotic terms the target and final states have the same free energy. 
This means that one can get arbitrarily close to the target state with much
lower free energy than the initial state. The second case corresponds 
to the target state having much larger free energy than the initial state. 
The transformation error then approaches one in the asymptotic limit, 
while the amount of dissipated free energy F f t 'ss approaches zero. This
means that it is impossible to even get slightly closer to the target state 
with much higher free energy than the initial state, and so the optimal 
process corresponds to doing nothing (that is why there is no free energy
dissipated).

Finally, the third case that forms the essence of Theorems 7.3.1 and 7.3.2 
corresponds to the target state having free energy very close to that of the 
initial state (again, the scale is set by the magnitude of free energy fluctu
ations). Our theorems then directly link the optimal transformation error 
and the minimal amount of dissipated free energy in the process to the 
free energy fluctuations of the initial state of the system. For two processes
with the same free energy difference Δ F n , the process involving the
initial state with smaller fluctuations will yield a smaller transformation
error according to Eq. (7.9) . Similarly, since the derivative of Eq. (7.14) 
over o(F n ) for a fixed Δ F n  is always positive, states with smaller free 
energy fluctuations will lead to smaller free energy dissipation. As 
a particular example consider a battery-assisted distillation process, 
i.e. a thermodynamic transformation from (p N  ® ∣1><1 ∣β  , H n  +  H b) to 
(p n  ® ∣0 χ 0 ∣β  , H n  +  H b), where the energy gap of the battery system B  

is Wcf t st. Now, the quality of transformation from p N to p n  (measured 
by transformation error e n ) depends on the amount of work Wcf t st that 
we invest into the process. As expected, to achieve e  ≤  1/2, we need to 
invest at least the difference of free energies [D  (p n  ∣∣ γ n ) -  D (p N  ∣∣ ) ] ∕β . 
However, Theorem 7.3.1 tells us how much more work is needed to 
decrease the transformation error to a desired level: the more free energy 
fluctuations there were in p N , the more work we need to invest.

Let us also compare our two theorems to the results presented in Ref. [100]. 
There,theauthorsstudied theincoherentthermodynamicinterconversion
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problem between identical copies of the initial system, , and identical 
copies of the target system, . Here, for the price of the reduced
generality of the target state (it has to be an eigenstate of the target
Hamiltonian), we obtained a four-fold improvement. First, our result 
applies to general independent systems, not only to identical copies. 
Second, the Hamiltonians of the initial and target systems can vary,
which is particularly important for applications like work extraction or
thermodynamically-free communication. Third, we went beyond the 
second-order asymptotic result and found a single-shot upper bound 
on the optimal transformation error e ⅛ , Eq. (7.10), that holds for any 
finite N . Thus, even in the finite N  regime, one can get a guarantee on
the transformation error that is approaching the asymptotically optimal
value as N  →  ∞ . Finally, we derived the expression for the actual amount 
of dissipated free energy in the optimal process and related it to the
fluctuations of the free energy content of the initial state.

Our second pair of main results is analogous to the first pair, but con
cerns thermodynamic distillation process from N  identical copies of a 
pure quantum system. Thus, the following two theorems connect the 
optimal distillation error to the free energy fluctuations of the initial
state of the system, and the minimal amount of free energy dissipated in 
such a distillation process to these fluctuations. To formally state these
theorems, we need to introduce a technical notion of a Hamiltonian with 
incommensurable spectrum. Given any two energy levels, E i and E j , 
of such a Hamiltonian, there does not exist natural numbers m  and n  

such that m E i = n E j . We then have that the optimal distillation error for
identical pure state is given by the Theorem:

Theorem7.3.3(Optimaldistillationerrorforidenticalpure states). Fora 
distillation setting with N  identical initial systems, each in a pure state ∣ψ X ψ  ∣ 
and described by the same Hamiltonian H  with incommensurable spectrum, 
the transformation error e ⅛ of the optimal e -approximate distillation process
in the asymptotic limit is given by

(7.16)

where Φ  denotes the cumulative normal distribution function. Moreover, the 
result still holds if both the initial and target systems get extended by an
ancillary system with an arbitrary Hamiltonian H a , with the initial and 
target states being some eigenstates o f H a .

As before, such processes are accompanied by some free energy dissipa
tion, which specifically satisfies:

Theorem 7.3.4 (Fluctuation-dissipation relation for identical pure
states). The minimal amount of free energy dissipated in the optimal (min
imising the transformation error e ) distillation process from  identical pure
states asymptotically satisfies

(7.17)

where a (e ) is given by Eq. (7.13).
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We prove the above theorems in Secs. 7.5.4 and 7.5.5, while here we will
only add one comment to the previous discussion. Namely, since for a
pure state the free energy fluctuations are just the energy fluctuations

(7.18)

and because in the considered scenario all pure states are identical, we
have

(7.19)

where we use a shorthand notation (∙)ψ  = (ψ | ∙∣ψ ) . Analogously to the
incoherent case, the only non-trivial behaviour of the optimal transfor
mation error happens when Δ F n  a ^ ∕N , and its value is then specified 
by the ratio a ∕({H 2)ψ -  {H )1/ 2.

7.4 Applications

In the last section, we characterised optimal thermodynamic distillation 
processes and subsequently proved a relation between the amount of free 
energy dissipated in such processes and the free energy fluctuations of the 
system's initial state. We now apply these results to determine the optimal 
performance of thermodynamic protocols, including work extraction,
information erasure, and thermodynamically-free communication, up to 
second-order asymptotics in the number N  of processed systems.

7.4.1 Optimal work extraction

As the first application of our results, we focus on work extraction process
from a collection of N  non-interacting subsystems with Hamiltonians 

and in incoherent states . As already described in Sec. 4.3.1, this is
just a particular case of a thermodynamic distillation process. We only
need to note that the pure battery state does not contribute to fluctuations 
σ  and κ , and that the difference between non-equilibrium free energies 
of the ground and excited battery states is just the energy difference Wej^ t. 
Then, Theorem 7.3.1 tells us that, in the asymptotic limit, the optimal 
transformation error for extracting the amount of work Wej^ t is

(7.20)

We thus clearly see that again we have three cases dependent on the 
difference (W ej ^ t -  F n ) . To get the asymptotic error different from zero 
and one, the extracted work Wê t has to be of the form

W e* t ≈  F n  -  a √N ,  (7.21)

for some constant a . Combining the above two equations yields the
following second-order asymptotic expression for the extracted work:

(7.22)



7.4 Applications 131

Figure 7.3: Optim al work extraction. (a) Comparison between the asymptotic approximation, Eq. (7.22), for the optimal amount of
extracted work (solid black line) as a function of transformation error e , and the actual optimal value W  (red circles) obtained 
by explicitly solving the thermomajorisation conditions (see Chapter 3  for details). The inverse temperature of the thermal bath is 
chosen to be β  = 1, while the initial system is composed of 100 two-level subsystems. The first 59 subsystems are described by the 
Hamiltonian corresponding to a thermal state 0 .6 ∣0)(0 ∣ +  0 .4 ∣1)(1 1, and the remaining 41 subsystems have the Hamiltonian leading to a 
thermal state 0 .75 ∣0)(0 ∣ +  0 .25 ∣1)(1 ∣. The initial state of the system is given by 59 copies of a state 0 .9 ∣0)(0 ∣ +  0 .1 11)(1 ∣ and 41 copies 
of a state 0 .7 ∣0)(0 ∣ +  0 .3 ∣1)(1 ∣. The non-equilibrium free energy of the total initial system, i''', is indicated by a grey dotted line. (b) 
Non-equilibrium free energy F ⅛at of the two-level battery system calculated for the final (dashed red line) and target (solid black line) 
state of the optimal work extraction process. The inverse temperature of the thermal bath is chosen to be β  = 1, and the initial state that 
the work is extracted from  is composed of 100 copies of a state 0 .7 ∣0)(0 ∣ +  0 .3 ∣1)(1 ∣. Each subsystem is described by the Hamiltonian 
corresponding to a thermal state 0 .6 ∣0)(0 ∣ +  0 .4 ∣1)(1 ∣ and the non-equilibrium free energy of the total initial system, i''', is indicated by
a grey dotted line

Thus, for a fixed quality of extracted work measured by e , more work can
be extracted from states with smaller free energy fluctuations (assuming
that the initial free energy Fn  is fixed). This is a direct generalisation
of the result obtained in Ref. [100] to a scenario with non-identical
initial systems and with a cleaner interpretation of the error in the
battery system. We present the comparison between our bounds and the 
numerically optimised work extraction processes in Fig. 7.3a

Similarly, by employing Theorem 7.3.3, we can investigate the optimal 
work extraction process from a collection of N  non-interacting subsystems 
with identical Hamiltonians H  and each in the same pure state ∣ψ X ψ |. 
We simply need to choose the ancillary system A  to be the battery B  with 
energy splitting Wej^ t and the initial and target states to be given by ∣0}β 
and ∣1}β. Also, since all systems are in identical pure states and have the 
same Hamiltonian, we have o(F n  ) specified by Eq. (7.19) and

(7.23)

As a result, the optimal amount of work extracted from N  pure quantum 
systems up to second-order asymptotic expansion is given by:

(7.24)

Finally, let us note that we can employ Theorem 7.3.2 (and to some extent 
also Theorem 7.3.4) to investigate the meaning of work quality measured 
by the transformation error e . So far we have measured the extracted 
work as the difference between the free energy of the initial battery's 
state and its target state that was obtained with success probability 1 -  e .
However, due to the aforementioned theorems, we know precisely the 
free energy of the actual final state of the battery, which can be used to
quantify the actual amount of extracted work (with no error). In Fig. 7.3b
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we present the behaviour of both measures as a function of e , where it is 
clear that the two notions coincide for small error e .

7.4.2 Optimal cost of erasure

In order to obtain the optimal work cost of erasing N  two-level systems 
prepared in incoherent states , we apply Theorem 7.3.1 analogously
as in the previous section, but this time to the scenario described in 
Sec. 4.3.2. We then get the optimal transformation error in the erasure
process given by

(7.25)

where S (p N ) is the entropy of the initial state, and W cj° st is the invested
work cost. Using analogous reasoning as in the case of work extraction, 
we can now obtain the second-order asymptotics for the cost of erasure:

(7.26)

Let us make three brief comments on the above result. First, we only
considered the application of the incoherent result, Theorem 7.3.1, as in
the case of trivial Hamiltonians, the erasure of a pure state ∣ψ }(ψ ∣0 w  is
free (because all unitary transformations are then thermodynamically- 
free). Of course, our results straightforwardly extend to non-trivial 
Hamiltonians, but we believe that the simple case we described above 
is most illustrative and recovers the spirit of the original Landauer's 
erasure scenario. Second, since the maximally mixed initial state has
vanishing free energy fluctuations, o(F n ) = 0, we cannot directly apply
our result (that relates fluctuations of the initial state to dissipation) to get
the erasure cost of N  completely unknown bits of information. However,
using the tools described in Sec. 7.5, it is straightforward to show that in
this case, the exact expression (working for all N ) for the erasure cost is
given by

(7.27)

7.4.3 Optimal thermodynamically-free communication 
rate

Finally, we now explain how Theorems 7.3.1 and 7.3.3 allow one to obtain 
the optimal thermodynamically-free encoding rate into a collection of
N  identical subsystems in either incoherent or pure states. We simply 
choose the target system to be a single M -dimensional quantum system 
with a trivial Hamiltonian H  = 0 that is prepared in any of the degenerate
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eigenstates of H . Note that the non-equilibrium free energy of such a
target system is given by

1 1- D (p n  IIγ n ) = -  logM . (7.28)

Our theorems then tell us that in the asymptotic limit, the optimal 
transformation error e  in the considered distillation process is given by

(7.29)

Rewriting the above, we get the following second-order asymptotic 
behaviour:

log M  ≈  p F N +  β σ (F w )Φ " 1(e) . (7.30)

Now, the distillation process above can be followed by unitaries that 
map between M  degenerate eigenstates of H  that we will simply denote |1) , . . . ,  |M } . Crucially, note that such unitaries are thermodynamically- 
free because they act in a fixed energy subspace. Such a protocol then 
allows one to encode M  messages into M  states σ ,∙, each one being e-close 
in infidelity to |i }  for i  ∈ { 1, . . .  , M } . Decoding the message using a 
measurement in the eigenbasis of H  then leads to the average decoding 
error e ⅛ satisfying:

(7.31)

so that e a  = e .

Using the communication protocol described above, we then get the
following asymptotic lower bound on the optimal thermodynamically-
free encoding rate into a state p N [recall Eq. (4.36)]1:

R (Pn , e d ) ≥  (F n  +  c (F n )Φ- 1 (e d )) +  - L )  . (7.32)

The above lower bound is exactly matching the upper bound for R (p N , e ⅛) 
recently derived in Ref. [138] for a slightly different scenario with = p 
and H 1̂  = H  for all n , with H n  = H n , and with Gibbs-preserving
operation instead of thermal operations. However, the proof presented
there can be easily adapted to work in the current case if we keep the 
first restriction, i.e., when the initial state is p N = p ® N and all initial 
subsystems have equal Hamiltonians. We explain in detail how to adapt
that proof in Section 7.5.6, where we also explain what technical result
concerning hypothesis testing relative entropy needs to be proven in 
order to make the proof also work when subsystems are not identical. 
Here we conclude that

(7.33)

1: The optimal encoding rate is given by:

K (p » , , d) := ' ' .

where p  is either a pure or incoherent state.

The above result can be thermodynamically interpreted as the inverse of 
the Szilard engine. While the Szilard engine converts bits of information
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into work, the protocol studied here employs the free energy of the 
system (i.e., the ability to perform work) to encode bits of information. 
While the asymptotic result was recently proven in Ref. [137], here we 
proved that this relation is deeper as it also connects fluctuations of free 
energy to the optimal average decoding error.

7.5 Derivation of the results

In what follows, we first introduce the mathematical formalism used 
to study the incoherent distillation process. We then use it to prove 
Theorems 7.3.1 and 7.3.2. Finally, we also prove Theorems 7.3.3 and 7.3.4 
by first mapping the problem of distillation from pure states to an equiv
alent incoherent problem, and then using the formalism of incoherent 
distillations.

7.5.1 Incoherent distillation process

Distillation conditions via approximate majorisation

We begin by restating the crucial theorem based on Ref. [56] regarding 
thermodynamic interconversion for incoherent states.

Theorem 7.5.1 (Approximate thermomajorisation). For the initial and
target system with the same thermal distribution γ , there exists a thermal 
operation mapping between an energy-incoherent state p and a state e -close 
to q in infidelity distance, i f  and only i f  p > ε  q .

Despite the fact that in our case we want to study the general case of initial 
and final systems with different Hamiltonians, with a little bit of ingenuity
we can still use the above theorem. Namely, we consider a family of total
systems composed of the first N  subsystems with initial Hamiltonians 
H 1f i , and the remaining part described by the target Hamiltonian H n  . 
We choose initial states of the total system on the first N  subsystems 
to be a general product of incoherent states p ^l , while the remaining 
part to be prepared in a thermal equilibrium state γ n  corresponding 
to H n  . Since Gibbs states are free, this setting is thermodynamically 
equivalent to having just the first N  systems with Hamiltonians H 1f i  

and in states p 1̂ . Moreover, for target states of the total system, we 
choose thermal equilibrium states γ 1̂  for the first N  subsystems, and 
sharp states s of the Hamiltonian H n  for the remaining part. Again, 
this is thermodynamically equivalent to having just the system with 
Hamiltonian H n  and in a state s . Thus, employing Theorem 7.5.1, an e-approximate distillation process for incoherent states exists if and only
if:

(7.34)

This way, using a single fixed Hamiltonian, we can encode transformations 
between different Hamiltonians.
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Let us introduce the following shorthand notation:

Then, we can use the previous facts on the embedding map to conclude
with the following statement: there exists an e-approximate thermody
namic distillation process from N  systems with Hamiltonians H%l and 
in energy-incoherent states p ^l to a system with a Hamiltonian H n  and 
in a sharp energy eigenstate s if and only if

P N ® f∣N > e  G N ® f  (7.36)

Information-theoretic intermission

Before we proceed, we need to make a short intermission for a few impor
tant comments concerning information-theoretic quantities introduced
in Section 4.1.1. For incoherent states p  and γ  represented by probability 
vectors p  and γ , these simplify and take the following classical form:

(7.37a)

(7.37b)

(7.37c)

Moreover, by direct calculation, one can easily show that the above
quantities are invariant under embedding, i.e., D (p ∣∣γ ) = D (p∣∣̂), and 
the same holds for V  and Y . Therefore

Optimal error for a distillation process

In order to transform the approximate majorisation condition from 
Eq. (7.36) into an explicit expression for the optimal transformation 
error, we start from the following result proven by the authors of
Ref. [100].
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Lemma 7.5.2 (Optimal transformation error). Let p and q be distributions 
with V  (q) = 0. Then

exp H ⅛ )

min { e ∣p > ε  q } = 1 -  p∣. (7.40)
i= 1

Applying the above lemma to Eq. (7.36) yields the following expression
for the optimal error e ⅛ :

exp [H ((⅛ N ) + H ( f  “ ) ]

; = 1 -  ∑  P N ® tjn  j ∙ .  (7.41)
i= 1 v ' l

Now, for an arbitrary distribution p  and any flat state f ,  we make two 
observations: the size of the support of f  is simply ex p (H (f )), and the 
entries of p  ® f  are just the copied and scaled entries of p . As a result, 
the sum of the I largest elements of p  can be expressed as

;  I eχp (H (f ) )∑  P l = ∑  (p  ® ∕ ) f . (7.42)
1= 1 1 = 1

Inverting the above expression we can write 

;  l eχp ( - H (f ) )

∑ (p  ® f )∖ = ∑  p f ,  (7.43)
i= 1 i= 1

where the summation with non-integer upper limit x  should be inter
preted as:

x L-fl
∑ P ≈ - = ∑  P i +  (x  - lχ ∖")P M . (7.44)
i= 1 i= 1

Since η  is a flat state, we conclude that

exp ∣H ( δ  N  ) + H ( f  % ) - H (η  n  )1

e N = 1 -  ∑  (P  )} . (7.45)
i= 1

We see that the error depends crucially on partial ordered sums as above. 
To deal with these kind of sums, we introduce the function χ p  defined 
implicitly by the following equation

X p  (0∑  p }  = ∑ { P ≈ ∣P ≈ ≥  1/1} . (7.46)
i= 1 i

In words: χ p  (I) counts the number of entries of p  that are larger than 1/ 1. 
Now, we have the following lemma that will be crucial in proving our 
theorems.
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Lemma 7.5.3 (Ordered summation bounds). Every d -dimensional proba
bility distribution p satisfies the following for  all I ∈ { 1, . . . ,  d }  and for  all 
a  ≥  1:

(7.47a)

(7.47b)

(7.48)

Moreover, as the probabilities are ordered in the sums given in Eq. (7.47a) 
and Eq. (7.47b), it simply follows that

Xp (Z) ≤  I ≤  χ p ( a Γ)∕c .  (7.49)

Proof. The first inequality is very easily proven by observing that the
number of entries larger than 1/Z, i.e., χ p (l ), is bounded from above by I

due to normalisation. Now, to prove the second inequality, we start from 
the following observation:

which comes from the fact that all the extra terms on the right hand side 
of the above are negative by definition. By rearranging terms we arrive at

(7.50)

which obviously implies

(7.51)

□

7.5.2 Proof of Theorem 7.3.1

The proof of Theorem 7.3.1 will be divided into two parts. First, we
will derive the upper bound for the optimal transformation error e ⅛ , 
Eq. (7.10). Then, we will provide a lower bound for e ⅛ and show that it
is approaching the derived upper bound in the asymptotic limit, and so
we will prove Eq. (7.9).

Upper bound for the transformation error

We start by introducing the following averaged entropic quantities for
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the total initial distribution P
N

(7.52a)

(7.52b)

(7.52c)

Note that the above v χ  and ι ∕v  are, up to rescaling by N ∣ β , incoherent 
versions of σ 2(P w ) and k3(F n ) defined in Eqs. (7.6b)-(7.6c). We also 
define the function I:

l (z ) : -  exp ( n Hn +  z x ∕N v ^ (7.53)

We now rewrite the upper summation limit appearing in Eq. (7.45) 
employing the above function:

exp  [H((⅛N) +  H ( f  k ) -  H (r jn )] -  l (x ) , (7.54)

so that

(7.55)

This can be further transformed by employing the invariance of relative
entropic quantities under embedding, Eqs. (7.38a)-(7.38b), leading to

(7.56)

which is precisely the argument of Φ appearing in the statement of 
Theorem 7.3.1 in Eq. (7.9): x  -  Δ F n ∣o(F n ) . We conclude that with this x ,
we can then rewrite the expression for the optimal transformation error,
Eq. (7.45), as

l(x )
e N -  1 -  ∑ (J>n ) ‘ .

i- 1
(7.57)

Next, we will find an upper bound for the error employing Eq. (7.47a):

(7.58)
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In order to evaluate the above sum, consider N  discrete random variables 
X n taking values -  log(p with probability (p ) ,∙, so that

(X n) = h " ,  (7.59a)

{(X n -  ( X n>)2> = v " ,  (7.59b)<|X „  - < x n >∣3> = ^ ,  (7.59c)

where the average ( ■} is taken with respect to the distribution p . We 
then have the following

(7.60)

Now, the Berry-Esseen theorem [222, 223] tells us that

(7.61)

where C  is a constant that was bounded in Refs. [224, 225] by

0 .4097 ≤  C  ≤  0 ∙4748∙

We thus have

(7.62)

(7.63)

and so we conclude that the error e n is bounded from above by

(7.64)

which proves the single-shot upper bound on transformation error,
Eq. (7.10), presented in Theorem 7.3.1. Also, note that from Eq. (7.64), it
is clear that if lιm∖ → ∞  v n and lim^ → ∞  y ∏ are well-defined and non-zero 
(as we assume), then

Lower bound for the transformation error

(7.65)

In order to lower bound the expression for the optimal error in the



140 7 Fluctuation-dissipation relations for thermodynamic distillation processes

asymptotic limit, we choose a  = exp(δ √ N ^  with δ  >  0 in Eq. (7.47b).

Thus, from Eq. (7.49) and Eq. (7.53) we have

Using Eq. (7.63) we can bound the above expression from below as

(7.68)

Now, for any finite δ >  0 it is clear that there exists N o such that for all 
N  ≥  N o we have c  >  1. Combining with Eq. (7.66), for large enough N  

we finally have

X p N [ l (x  +  δ)]
K x ) ≤  -  ~ ≤  Xp N [ l (x  +  δ )] . (7.69)

Hence, using Eq. (7.69), we have the following lower bound on transfor
mation error

(7.70)

where in the last line we used Eq. (7.63) again. It is thus clear that

and, since it works for any δ  >  0, we conclude that

(7.72)

Combining the above with the bound obtained in Eq. (7.65), we arrive
at

(7.73)

which proves the asymptotic expression for the transformation error, 
Eq. (7.9), presented in Theorem 7.3.1.
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7.5.3 Proof of Theorem 7.3.2

The proof of Theorem 7.3.2 will be divided into two parts. First, we will
find the embedded version of the optimal final state minimising the
dissipation of free energy F ^ , and derive the expression for as a
function of the initial state. Then, we will calculate F f  up to seconddiss

order asymptotic terms by upper and lower bounding the expression,
and showing that the bounds coincide.

Deriving optimal dissipation

We start by presenting an extension of Lemma 7.5.2 that not only specifies 
the optimal transformation error for approximate majorisation but also 
yields the optimal final state.

Lemma 7.5.4 (Optimal final state). Let p and q be distributions o f size 
d with V (q ) = 0 and H (q ) = log L . Then, states r saturating p > ε  q , i.e., 
such that p >  r and F (q , r ) = 1 -  e  with e  being the minimal value specified 
by Lemma 7.5.2, are given by Π q * , where Π  is an arbitrary permutation,

(7.74)

B is an arbitrary (d  -  L ) × ( d  -  L ) bistochastic matrix, and p' is a vector o f 
size (d  -  L ) with p ,i = p j+L. Moreover, among all such distributions Π q * , the 

entropy is minimised for  the one with B  being the identity matrix.

The proof of the above lemma can be found in Section 7.5.7. Here, we 
apply it to the central Eq. (7.36) that specifies the conditions for the 
investigated e-approximate thermodynamic distillation process. As a

⅛Nresult, the actual total final state in the embedded picture, F  , which is e  

away from the target state G  ® f  k , is given, up to permutations, by

(7.75)

where
(7.76)

Note that we have chosen F N to minimise entropy since, due to Eq. (7.38a), 

it translates into the real (unembedded) final state F n  with maximal free
energy, i.e., it leads to minimal free energy dissipation.

The next step consists of going from the embedded to the unembedded 
picture. Importantly, if a state in the embedded picture is not uniform 
within each embedding box, the unembedding will effectively lead to 
the loss of free energy. However, we note that the final state is given 
by Eq. (7.75) only up to permutations. Thus, one may freely rearrange 
its elements to minimise such a loss. In particular, in Section 7.5.10 we 
show that for the case of identical initial states (i.e., P n = p ® N ), there 
exists a permutation that transforms F N so that it is uniform in almost all

embedding boxes, which leads to exponentially small dissipation of free
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energy (i.e., no dissipation up to second-order asymptotics). Therefore, 
employing the definition of dissipated free energy from Eq. (7.8) and the 
above discussion, we have

f L  = 1  ( d (p n i ign ) -  d(p n i i g n  ® g n ))

- 1  (h (∙Fn ) -  H (P N) -  log β )  . (7.77)

Here, D  is the embedding constant defined by G N according to Eq. (3.20), 
and similarly D  will denote this embedding constant for G n  . Note, 
however, that these can always be chosen to be equal, since the only thing 
that matters is that ( 5 = D ⅛ /D  and = D k /D , i.e., the change in D
or D  can be compensated by the appropriate change in D ⅛ or D k .

Next, noting that K  = DID ⅛ = D D ⅛ , we calculate the entropy of F N :

(7.78)

where we have dropped the term (1 -  e ) log(1 -  e ) as it is constant (i.e. 
it does not scale with N ). Therefore, the dissipated free energy in the 
optimal distillation process is simply given by

(7.79)

Calculating optimal dissipation

We now proceed to provide bounds for F ^ ss∙ To do so, we first make use 
of Eq.(7.49) and the fact that log x  is negative for all x  ∈ (0, 1) to write

The right hand side of the above can then be recast as follows,

(7.81)
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Let us now note that from the definition in Eq. (7.7) we have (here we 
employ the notation introduced in Eqs. (7.52a)-(7.52c)):

Next, since for non-trivial error we need

β ΔX''' = x β σ ( F N ) = x λ∕ N v n , (7.83)

with some constant x , we can rewrite log D ⅛ as

log D  ⅛ = N h ⅛ +  xλ∣N v n . (7.84)

Coming back to Eq. (7.81), we can rewrite it by introducing N  discrete 
random variables { X n } ̂ = 1 assuming values -  lo g  p I with probability

(p ) iπ . Crucially, since the sum of their averages is N  h ^  and their total 
variance is N v ⅛ , the condition in the summation in Eq. (7.81) simply 
becomes:

Thus, we can write Eq. (7.81) in a compact way as follows

(7.85)

(7.86)

where P  is discrete probability measure given by P (i ι , . . . ,  i χ ) = ∏  N = i (Pn ) i„  

and T  is a region satisfying the constraint Y⅛ <  X ∙ Noting that

N∑  X n = x∕ n ^ Y n  +  N h N (7.87)
n~̂ ∖

we can further rewrite it as

∑  X N d P  = YN d P  +  N h N d P .  (7.88)
π = 1

T Yn  ≤x Yj√ ≤x

The second integral on the right hand side of the above was already 
calculated and is equal to 1 -  e , where e  is the optimal transformation error 
from Theorem 7.3.1. Further, since Y^  is a standarized sum of independent 
random variables, its distribution tends to a normal Gaussian distribution 
with density denoted by φ (x ), i.e.,

Γ  Γ x P- χ 2∣2
YN d P  ≈  y φ (ŷ )d y  = ------- - . (7.89)

- ∞  2π
Yn  ≤x
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We thus obtain:

We can now use the inequality from Eq. (7.80) and substitute the above 
to Eq. (7.79) to arrive at:

(7.91)

Next, employing Eq. (7.83) and the expression for optimal transformation 
error from Theorem 7.3.1, we can re-express x  as

x  = - Φ - 1 (e ) (7.92)

to finally obtain

(7.93)

To provide a lower bound of F j ' i'ss given in Eq. ( .7' ), we simply follow the 
argument we have given in Sec. 7.5.2. From Eq. (7.47b) it straightforwardly
follows that

(7.94)

where c , as before, can be lower bounded by 1 for large enough N . We
thus get

(7.95)

Since the above inequality holds for any δ  >  0, therefore the limit δ  →  0
we have χ γλ, - ^ m2 a

Combining the above with the upper bound from Eq. (7.93) we finally
arrive at

F d L  “  * ( Φ ( F n ) , (7.97)

where a (e ) is given by Eq. (7.13).

(7.96)
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7.5.4 Proof of Theorem 7.3.3

The proof of Theorem 7.3.3 will be divided into three parts. First, we will
show that a thermodynamic distillation process from a general state p

can be reduced to a distillation process from an incoherent state that is a
dephased version of p . Employing this observation, we will recast the
problem under consideration in terms of approximate majorisation and 
thermomajorisation as described in Sec. 7.5.1. Then, in the second part of 
the proof, we will derive the upper bound for the optimal transformation
error e ⅛ . Finally, in the third part, we will provide a lower bound for 
e ⅛ and show that it is approaching the derived upper bound in the
asymptotic limit, and so we will prove Eq. (7.16).

Reducing the problem to the incoherent case

The thermodynamic distillation problem under investigation is specified
as follows. The family of initial systems consists of a collection of N

identical subsystems, each with the same Hamiltonian

d
H  = ∑  E l ∖E l } ( E i∖, (7.98)

1= 1

and an ancillary system with an arbitrary Hamiltonian H a (note that the
ancillary system can always be ignored by simply choosing its dimension 
to be 1). The family of initial states is given by

p N = ® \E0  ><E 0l ∣ , (7.99)

where ψ = ∖ ψ><ψ∖, ∖ ψ> = ∑  √^ e l φ l∖E i > , (7.100)
i= 1

is an arbitrary pure state and ∣E ^  is an eigenstate of H a with energy E 0 . 
The family of target systems is composed of subsystems described by 
arbitrary Hamiltonians H n  and a subsystem described by the Hamilto
nian H a . The family of target states is given by

p N  = \E k ><̂ k ∣ ® ∖e11 ><e ^ ∣ , (7.101)

where ∣E is some eigenstate of H n  and ∣E ^) is an eigenstate of H a 
with energy E ^ . We are thus interested in the existence of a thermal 
operation E  approximately performing the following transformation:

ψ w  ® ∣E 0l ><E 01∖ →  \E " > < Ę  ∣ ® \E ?  X E f \. (7.102)

We now have the following simple, but very useful, lemma.

Lemma 7.5.5 (Dephasing invariance of TOs). Every incoherent state σ  

achievable from a state p  through a thermal operation is also achievable from  
D (p ), where D  is the dephasing operation destroying coherence between
different energy subspaces:

∃ E  : E (p) = σ  ⇔  E  [D (p)] = σ . (7.103)
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Proof. First, for a given p  and incoherent σ , assume that there exists 
a thermal operation such that (p) = σ . Now, employing the 
fact that every thermal operation is covariant with respect to time- 
translations [226], and using the fact that incoherent σ  by definition 
satisfies D (σ) = σ , we get

E  [D (p)] = (p)] = D (σ) = σ . (7.104)

Likewise, the reverse implication holds by noting that the dephasing 
operation is a thermal operation.

Because the target state in our case is incoherent, we can use the above
result to restate our problem as the existence of a thermal operation
approximately performing the following transformation

D (ψ ® N  ® ∣ E ^ ( E 0l ∣) - →  ∖ E ^ E * | ® ∣E^><E1i ∣ . (7.105)

Since
D (ψ 0 w  ® ∣E 01 ) ( E 0 1) = D (Ψ0n ) ® ∣E 0l ) ( E ^ ∣ , (7.106)

our problem further reduces to understanding the structure of the 
incoherent state D (ψ ® N ) . It is block-diagonal in the energy eigenbasis 
and can be diagonalised using thermal operations (since unitaries in 
a fixed energy subspace are free operations). After such a procedure,
we end up with an incoherent state that is described by the probability
distribution P n  over the multi-index set k

(7.107)

Note that P ⅛ specifies the probability of k ι  systems being in energy state 
E ι , k 2 systems being in energy state E 2 , and so on; and that we made a 
technical assumption that energy levels are incommensurable, so that 
each vector k corresponds to a different value of total energy.

We have thus reduced the problem of thermodynamic distillation from
pure states to thermodynamic distillation from incoherent states. More 
precisely, let us denote the sharp distributions corresponding to ∣E <4̂  
by s Ą and the corresponding flat states after embedding by f Ą . As 

before, we also use s and f  to denote distributions related to the 
sharp state ∣E and its corresponding flat state. The embedded Gibbs

state corresponding to H n  will be again denoted by G  , however now it 
has an even simpler form than in Eq. (7.35), as the initial systems have 
identical Hamiltonians:

G N = Y ® N = , j ∖  (7.108)

Similarly, P N will be used to denote the embedded initial state (even 

though it now has a different form than in Eq. (7.35)):

(7.109)
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where y ,∙ = D i /D  and

g fe ∈ { l .........∏  D ∙ j  (7.110)

is an index for the degeneracy coming from embedding. With the notation
set, our distillation problem can now be written as

P N  ® f ^  ® η > ε  G N  ® f ^  ® f k . (7.111)

Upper bound for the transformation error

We begin by observing that our target distribution in Eq. (7.111) is flat,
and so V (G  ® f 1  ® f k ) = 0. Thus, we can employ Lemma 7.5.2 and
Eq. (7.43) to get the following expression for the optimal transformation
error:

e N = 1 -  ∑ (P N )}  (7.112)

7=1

where L  is given by

L  = exp [H (G N ) +  H ( ∕ f ) +  H ( f  k ) -  H ( f ^ ) -  H (⅞)]
= exp [H (GN ) -  D ( f  k ∣∣⅞) -  β (E ^  -  E j* ) ] .  (7.113)

Notice that in the current case Δ F n  , defined in Eq. (7.7), is given by

Δ F n  = 1  ( θ (ψw IIγ ® N ) +  D (∣E ^ ><EθN IIFa )

-  D (∖Ek > < Ę 11∣γ ) -  D (∣E 11 ><E ^ ∣ ∣∣7 a ) )

= 1  ( N D (ψ II γ ) - D  (f  k ∣∣η ) - β (E ^ - E 0 ) ) .  (7.114)

Using the above we can then rewrite L  as

log L  =β Δ p N  +  H (GN ) -  N D (ψ ∣∣γ ) . (7.115)

Now, employing Eq. (7.47a) and the above, we provide the upper bound
for e N :

(7.116)

To simplify the calculation of the upper bound of €n , we rewrite each fe 

as a function of a vector s such that

fe = fe(s ) = N  p  +  √N  s , (7.117)
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Figure 7.4: Standardising the bivariate norm al distribution . The points with equal probability density for the bivariate normal 
distribution are represented by a red ellipsis centred at the origin, and the black dashed line corresponds to the constraining hyperplane.
The upper bound on is given by the probability mass within the shaded area. In order to calculate it, we first apply a rotation and
scaling transformation, making the ellipsis symmetric with respect to the origin. Then, using the rotational symmetry of the standard
bivariate normal distribution, one can rotate it such that the hyperplane becomes parallel to V2 .

with ∑ rf= 1 S i = 0. We then note that

rf

° (Ψ II7) = -  ∑  P i log 7 ≈ (7.118)
i= 1

and so the condition in Eq. (7.116) can be rewritten as

)

As we rigorously argue in Section 7.5.8, the left-hand side of the above
vanishes much quicker than the right-hand side when N  →  ∞ , leading 
to

(7.120)

Our goal is then to calculate the sum of in the limit N  →  ∞  subject 
to the following hyperplane constraint

(7.121)

where E  is a vector of energies (eigenvalues of H ). First, we approximate 
the multinomial distribution P n  specified in Eq. (7.107) by a multivariate 
normal distribution with mean vector μ  = N p  and covariance
matrix Σ  = N  (diag (p ) -  p p τ ) :

(7.122)

As we explain in Section 7.5.9, such an approximation can always be 
made with an error approaching 0 as N  →  ∞ . Next, we standardise 
the multivariate normal distribution N(̂ ,e) using rotation and scaling 
transformations:

Σ  = Θ τ  √ Λ √ Λ Θ , (7.123)
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where Λ  is a diagonal matrix with the eigenvalues of Σ  and Θ is an 
orthogonal matrix with columns given by the eigenvectors of Σ . We 
illustrate this process for a three-level system (so described by S i  and 
S2 since ∑,∙ s j∙ = 0) in Fig. 7.4. This rotation and scaling of co-ordinates 
allows us to write as a product of univariate standard normal
distribution φ (y i):

(7.124)

where
y = √N (Θ τ  √ Λ )- i s . (7.125)

We then can equivalently write the equation specifying the hyperplane,
Eq. (7.121), as

(Θ τ  √ Λ y ) ∙ E ≥  - Δ F n . (7.126)

Observe that the standard normal distribution given in Eq. (7.124) is 
rotationally invariant about the origin. One can thus choose a coor
dinate system x  = { x i , . . . , X d } by applying a suitable rotation R  on 
y = { y i , . . .  , y i } , so that the hyperplane specified in Eq. (7.121) becomes 
parallel to all coordinate axes but the x ↑ axis. Eq. (7.124) can then be 
rewritten in the following form

(7.127)

As we have
x  = R y , (7.128)

we can use it together with Eq. (7.125) to rewrite Eq. (7.121) as

Θ τ √A R τ χ  ∙ E  ≥  - Δ F n . (7.129)

To calculate the right hand side of the inequality given in Eq. (7.120) in
the limit N  →  ∞ , we integrate Eq. (7.127) from - ∞  to d o  along X i , and 
from - ∞  to + ∞  along any other x,∙ ≠ X i , where d o  is the signed distance
of the hyperplane given in Eq. (7.129) from the origin (see Fig. 7.4). This 
distance can be explicitly calculated as

δfn AF n  Δ F n  ,⅛  =  =  √  = i = 0 ^ 0  <7'130> 
E ∙ ( R √Λ Θ )τ (R √Λ Θ )E  E ' ' )

where we have used the definition of o(F n ) from Eq. (7.6b) in the last line. 
Thus, the upper bound on e ⅛ in the limit N  →  ∞  given in Eq. (7.120)
can be calculated as

(7.131)

Lower bound for the transformation error
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We start by writing L  from Eq. (7.115) as

L  = exp ( A N  +  xx∕ N v ^  = : L (x ) , (7.132)

where

ΔFn
A  =H (η ) -  D (ψ ||y ) , x  = . (7.133)

In the previous section we have exactly calculated the right hand side of
Eq. (7.116) in the limit N  →  ∞  (see Eq. (7.131)). Using Eqs. (7.132)-(7.133), 
we can equivalently rewrite this as

(7.134)

where x  depends on N  as per Eq. (7.133). Now, to prove the lower bound 
on transformation error e ⅛ we start with the exact expression, Eq. (7.112), 
and use the inequality from Eq. (7.47b). Similarly as before, we choose 
a  = exp(δ √ N ^  such that δ  >  0, in the Eq. (7.47b). Thus from Eq. (7.49) 

and Eq. (7.132) we have,

(7.135)

where c  can be evaluated similarly as before:

(7.136)

Using Eq. (7.134), we see that the limiting behaviour of c  from Eq. (7.136) 
is given by

lim c  = (Φ(x  +  δ ) -  Φ (x  +  δ ∣ 2)) lim e  δ √ ^ ∣2 . (7.137)
N  —→∞  N —→∞

Thus, for any finite δ  >  0, there always exists N o such that for all N  >  N o 

we have c  >  1. Combining with Eq. (7.135), for large enough N  we finally 
have,

X p N  (L (x  +  δ))
L (x ) ≤  -  ≤  Xp N  (L (x  +  δ )) . (7.138)

Hence, using Eq. (7.138), we have the following lower bound on transfor
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mation error

(7.139)

where the first equality in the last line follows from Eq. (7.134). Since the
above inequality holds for any δ  >  0, taking the limit δ  →  0 we conclude 
that

Δ Fn
lim e ⅛ ≥  lim Φ ∣ -  . (7.140)

N  → ∞ N  → ∞ o(Fn  )

Finally, combining the above with the bound obtained in Eq. (7.131), we
have

I ΔFn  ∖
lim = lim Φ -  , (7.141)

N  → ∞

which completes the proof.

n →∞ y a (F N  ) j
7.5.5 Proof of Theorem 7.3.4

The proof of Theorem 7.3.4 will be divided into two parts. First, we will 
find the embedded version of the optimal final state minimising the
dissipation of free energy F ^  , and derive the lower bound for F % as adiss diss
function of the initial state. And then, we will calculate this bound up to 
second order asymptotic terms.

Deriving bound for optimal dissipation

WestartbyapplyingLemma7.5.4tothecentralEq.(7.111) thatspecifiesthe 
conditions for the investigated e -approximate thermodynamic distillation
process. As a result, the actual total final state in the embedded picture,
F N , which is e  away from the target state G  ® f k ® f  k , is given, up to

permutations, by

where

(7.142)

(7.143)

Similarly as before, we have chosen F N with minimal entropy (i.e., the 

bistochastic map B  from Lemma 7.5.4 was chosen to be a permutation),
as this minimises the dissipation of free energy. Due to the fact that 
the final state is specified only up to permutations, one may freely 
rearrange its elements to reduce the dissipation of free energy coming
from unembedding (such dissipation happens when a state is not uniform
within each embedding box). However, unlike in the previous case, this
permutationalfreedomdoesnotnecessarilyallowone tocompletelyavoid
additional dissipation. In the previous case, the number of non-uniform 
embedding boxes was exponentially small, which led to a negligible loss
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of free energy due to unembedding. But here, the number of non-uniform 
embedding boxes is not exponentially small and that can lead to a finite 
dissipation of free energy. Therefore, in this case, we can only provide a 
lower bound on dissipation of free energy as follows:

f L  = 1  z II g N ) +  d(∖eo X ^ O I II7 a ) -  D (F n IIG n  ® " ® G N )] ≥  |  [ d (-Pn IIgn ) +  H (P n ) +  D (∖ Ea }<E 0l ∣ | | y A)

-  D (F n I G n  ® y A ® <5N) ] , (7.144)

where we have used the fact that

D (ψ ® N  ∣∣G n  ) = D  (D (ψ 0 w  )|| G n  ) +  D  (ψw  || D (ψ w ))
= D  (P N || GN ) +  H  (P N ) . (7.145)

Next, we recall tir at H (P N) = O  (log N ) (see Section 7.5.8 for details), 
and note that D (∣E ^ ) ( E 01∣ ||y A) = -  log y A . Thus, the inequality from
Eq. (7.144) can be simplified as follows:

(7.146)

Here, D  and Da  are the embedding constants defined by Eq. (3.20) for 
G N and y A , respectively, and similarly D  will denote this embedding 

constant for Gn  . As before, D  and D  can be chosen to be equal, since 
the only thing that matters is that ( 5 = D ⅛ /D  and G t̂  = D k /D , i.e., the 
change in D  or D  can be compensated by the appropriate change in D ⅛ 

or D k . Furthermore, noting that k  = DID k D A = D D k D A , we can express 

the entropy of F as

where in the last step of we used the fact that L  = k /(D  Da ) , which comes
from Eq. (7.113). Thus, from Eq. (7.146), the dissipated free energy in the 
optimal distillation process is simply bounded by



7.5 Derivation of the results 153

Finally, using the expression for L  given in Eq. (7.132), we can rewrite the
above bound as

,  (7.149)

where A  and x  are given by Eq. (7.133).

Calculating bound for optimal dissipation

We now proceed to bounding the first term on the right hand side of 
Eq. (7.149). We start by noting that Eq. (7.138) implies that the following
holds for any δ  >  0:

Next, from the definition of χ ^ n [L(x +  δ)], it follows that

We now note that the constraint on the summand in Eq. (7.151) can be
modified using the parametrization of k as a function of s given in
Eq. (7.117) as follows:
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where in the second equality we used the form of L  given in Eq. (7.132)
and employed Eq. (7.118), whereas in the final equality we used the
definition σ(F w ) = √N v n ∕β  and Eq. (7.133) saying that x  = Δ Fn ∕ g(Fn ) . 
Moreover, since l o g ( . = O (logN ), the condition from Eq. ( 52 )

can be rewritten as

√N s ∙ E  +  Δ Fn  +  5o(Fn ) > 0 . (7.153)

Coming back, we can now rewrite Eq. (7.151) using the parametrization
of k as a function of s from Eq. (7.117) and re-expressing the constraint
using Eq. (7.153):

(7.154)

where we used the definition of A  from Eq. (7.133).

Our next goal goal is then to calculate the sum

(7.155)

Similarly as before, we will approximate the multinomial distribution P n  

by a multivariate normal distribution N ( ,̂ E ) with mean vector μ  = N p 
and covariance matrix Σ  = N (diag (p ) -  p p τ ):

(7.156)

Next, we standardise the multivariate normal distribution N ( ,̂ E ) using 
rotation and scaling transformations:

(7.157)

where Λ  is a diagonal matrix with the eigenvalues of Σ  and Θ is an 
orthogonal matrix with columns given by the eigenvectors of Σ . This 
rotation and scaling of co-ordinates allows us to write N ( ,̂ E ) as a product 
of univariate standard normal distribution φ (y ,∙):

(7.158)
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where

such that

(7.159)

(7.160)

From Eq. (7.159) and Eq. (7.160), one can write equivalently the sum 
given in Eq. (7.155) as

(7.161)

where we defined E := ΦΛQL with the following normalisation

One can then equivalently express Eq. (7.161) as

(7.163)

where E  is unit vector along E . Now, we choose a rotation R  such that

R E = (1, . . . ,  0)r (7.164)

and we call R y = x . Thus, we can rewrite Eq. (7.163) as

Now, employing multivariate normal distribution approximation and 
the fact that it is isotropic, we can exactly calculate the above expression
as an integral over x  of the following form

(7.166)

where d o  is the distance between the origin and the hyperplane specified 
by the constraint given in Eq. (7.165):

(7.167)

Thus, finally we get the following expression for the desired sum from
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Substituting the above to Eq. (7.154), and the resulting expression to 
Eq. (7.150), we get the following bound:

which in turn can be used in Eq. (7.149) to give the following:

(7.170)

Since the above holds for any δ  >  0, by taking the limit δ  →  0, we finally
arrive at

f L  > (1 -  'r  +N , ° (F N )√ 2π exp
( Δ F n  )2 

^2σ(F w )2 (7.171)

Employing Eq. (7.141) we have

Δ Fn  = - Φ - 1 (e)σ (F w ),

and so substituting this in Eq. (7.171) we obtain

F d t  >  .

with a  given by Eq. (7.13), which completes the proof.

(7.172)

(7.173)

7.5.6 Optimality of the communication rate

The following derivation will closely follow the proof of Lemma 1 of
Ref. [138]. Let us assume that for a system (p N ,H n  ) it is possible to 
encode M  messages in a thermodynamically-free way so that the average 
decoding error is e . It means that there exists a set of M  encoding thermal 
operations {E  } M 1 and a decoding POVM { Π j∙ } M 1 such that

1 M  , 1
1 -  e = m  ∑  ⅛ {E (p N )∏  . (7.174)

Note that every thermal operation E ?  between the initial system (p N , Hn ) 
and a target system (p n  , H n  ) preserves the thermal equilibrium state,

E ,(>-n  ) = t  n . (7.175)
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Now, let us introduce the following three states

τ ■=M  ∑ ∣z'><z' ∣ 0 E (p n ) , (7.176a)

i Mζ  := m  ∑ ∣ (7.176b)

i Mζ  := m  ∑ ∣;  ' ? N - (7.176c)

The hypothesis testing relative entropy D f  between τ  and ζ , defined 
b y [ 27- 22 ]

D f  (τ ∣∣ζ) := -  loginf { tr{ Q ζ } ∣ 0 ≤  Q  ≤  1 , tr{ Q τ }  >  1 -  e } , (7.177) 

satisfies the following

D ∣1 (τ∣ | ζ ) > -  logtr{ Q  ζ  } (7.178)

for
M

Q  = ∑ ∣ i  ><z∣ Θ  ∏ , (7.179)
1=1

This is because the above (potentially suboptimal) choice of Q  clearly 
satisfies 0 ≤  Q  ≤  1 and also

1 m ( 1tr{ Q τ } = m  ∑  tr E  (p)∏ ≈ >  1 -  e , (7.180)

due to our assumption in Eq. (7.174). At the same time we have

1 M ι
tr{ Q Q  = m  ∑  tr{ p w∏ , } = τ i , (7∙181)

so that
logM  ≤  D f  ( τ ∣∣ζ ) ∙ (7.182)

Next, we introduce the following encoding channel

M
F  := ∑ ∣z><z∣ Θ  E , (7.183)

1=1

which satisfies
F (ζ) = ζ . (7.184)

Employing the data-processing inequality twice, we get the following 
sequence of inequalities:

(7.185)
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Combining this with Eq. (7.182), we arrive at

logM  ≤  D ∣1 ( p N∣∣7 n) . (7.186)

Finally, for the case of identical initial subsystems, p N = p®N and 
y N = y ® N , we can use the known second order asymptotic expansion of
the hypothesis testing relative entropy [230],

1  D ef i  . I I ) -  D (p ∖Iγ ) +  y∕ ∑ ⅛ 2 Φ " 1(e) , (7.187)

leading to

l° g ∑  ≤  D  (p  11 χ ) Φ - 1 (e ) . (7.188)

For the above proof to work also in the case of non-identical subsystems,
one would need to prove the following asymptotic behaviour of the
hypothesis testing relative entropy:

7.5.7 Proof of Lemma 7.5.4

Consider q to be a probability vector that saturates p > ε  q .By  definition it 
means that p >  q and F (q , q ) = 1 -  e . Since V (q ) = 0 and H (q ) = log L , 
the probability vector q contains exactly L  non-zero entries such that 
each of them is equal to 1/L . Thus,

=  ( 1 ...........1 , 0 ............0 . (7.190)

L

From the definition of F (q , q ) given in Eq. (3.33) we have the following

(7.191)

where the first inequality follows from the definition of fidelity, while
the second one comes from the Cauchy-Schwarz inequality. Now, from
Lemma 7.5.4, we have

(7.192)
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Combining this with Eq. (7.191) we obtain

∑  p j  ≤  ∑  ? j . (7.193)
1= 1 1 = 1

On the other hand, p >  q gives

∑  P j  ≥  ∑  (7.194)
1 = 1 1 = 1

and so we conclude that

∑  P j  = ∑  ⅛  = 1 -  e - (7.195)
i= 1 i= 1

Next, note that as e  = 1 -  F (q , q ) ≥  1 -  F (q ! , q ! ), we see that to have 
the minimal value of error, q !  needs to maximize the fidelity F (q ! , q ! ) 
subject to the constraint given in Eq. (7.195). Thus we can write

(7.196)

The Lagrangian of the aforementioned optimization problem in Eq. (7.196)
is given by

where Λ  is a Lagrange multiplier. To find the solution of the problem we
calculate

(7.197)

(7.198)

for all j  ∈ { 1, . . . ,  L } . Solving ∂ L  /d ą .  = 0 we get

(7.199)

for all j  ∈ { 1, . . . ,  L } . Substituting q !  from Eq. (7.199) to the constraint 

specified in Eq. (7.195) gives

(7.200)

Therefore, putting Λ  from Eq. (7.200) into Eq. (7.199) finally gives

∀  ∈ { 1.........L } : q !  = . (7.201)

Since fidelity is a concave function, and the constraint defined in Eq. (7.196)
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is linear, this solution is optimal.

Next, we note that p >  q implies Q p ^  = q ^  where Q  is a bistochastic 
matrix. Since any Q  can be decomposed as a convex sum of permutations,
we can write

Q  = ∑  a iΠ ,∙, (7.202)
i

where Π ,∙ is a permutation matrix and ∑,∙ a i = 1 with a t ∈ [0, 1] for all i . 
Let us now define a vector v as

v := ( l , . . . ,  1, 0 . . . , θ ) .  (7.203)

L

Using this v , we can write the following

v  ∙ Q p l  = v ∙ q ^  = v ∙ p l  = (1 -  e ) ⇒  a  ,∙v ∙ Π j∙p ^  = v ∙ p ^ , (7.204)
i

where we use Eq. (7.195) in the first line, and the convex decomposition 
of Q  from Eq. (7.202) in the second line. Note that Eq. (7.204) can be 
equivalently written as

(7.205)

where ∏  is the transpose of the permutation matrix ∏ . Because the 
elements of v and p f  are arranged in a decreasing order, the maximum 
value of (∏ r v ) ∙ p f  is v ∙ p f . Thus, we see that equality in Eq. (7.205) holds 
if and only if v is invariant under (∏ T ) for all ∕ . Therefore, ∏ j∙ can be only 
of the form

∏,∙ = ∏  ® ∏ c , (7.206)

where ∏  and ∏ ^  are permutations that act trivially for indices i >  L  

and i  ∈ { 1, . . . ,  L } , respectively. Thus, we infer using Eq. (7.202) that Q  

is a block-diagonal matrix of the form

Q  = B ® B ,  (7.207)

where B  and B  are L  ×  L  and (d -  L ) ×  (d -  L ) bistochastic matrices. 
Thus,

(7.208)

Combining Eq. (7.201) and Eq. (7.208) we conclude that q f  = q * f  with 
q * defined in Eq. (7.74). This finally implies q = ∏ q * with ∏ being some
permutation. Moreover, it is straightforward to show that the minimal
entropy of q * is achieved for B  being the identity matrix, since the entropy 
is increasing under application of any non-trivial bistochastic matrix.
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7.5.8 Eliminating the logarithmic term

We start with the following lemma that will be needed to prove our 
claim.

Lemma 7.5.6 (Logarithmic growth of probability). For a fixed value o f  

b >  0 and any s , such that ∣∣s ∣∣ = s? ≤  b , we have

log P % g) = O (log N ), (7.209)

where P ⅛ and fc(s ) are defined by Eqs. (7.107) and (7.117), respectively.

Proof. We start by using the definition,

(7.210)

to write log as

Employing Stirling inequality,

log - N  +  N  log N  -  N  ≤  log N ! ≤  1 +  log - N  +  N  log N  -  N ,  (7.212) 

we first provide a lower bound for log

Recall that k i  (s i ) = N p ι  +  x / N s i , which implies ∑ *=  S i  = 0. To simplify
the above further, we lower bound the first term by employing the
inequality log(1 +  g ) <  g  for g  >  - 1 in the following way:
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where pmιn = min { p ↑ , . . .  , p ^ } . Moreover, observing that

(7.215)

we can conclude that

(7.216)

Putting it together, we further simplify the bound given in Eq. (7.213) as

log P * ≥ - d  -  - ⅛ - > log N  = O (log N ) . (7.217)
( ) P min

Similarly, by employing the Stirling inequality from Eq. (7.212), we also
prove an upper bound for log as follows

Using the inequality log(1 +  g ) ≥  for g  >  - 1, we have

(7.219)

The above inequality together with Eq. (7.216) imply that log P ^  , ≤
K (S)

O (log N ) which completes the proof. □

Using Lemma 7.5.6, we will now be able to prove our claim that is 
captured by the following result.

Lemma 7.5.7 (Equality between limits). The following limits are equal:
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Proof. We start by introducing the following notation

such that ∣∣ s ∣∣ ≤  b ,

B t N  ) := ∑  . . .  ς  S , £ , +  f N ,  ≥  θ )-
B ∣, b , N ) := ∑  j p ~ l , ) ∣ - ∑  ∑  s , E ,  +  F ~ s ≥  0- such that ∣∣s ∣∣ ≤  b ),

s ∖ N i

Ω (b , N ) := ∑ j p "  J  such that ∣∣s ∣∣ ≥  b ) . (7.221)

Our goal is to show that

lim A (N ) =
N → ∞

From the definition it follows that

A (N ) -  Ω (b , N ) ≤

B (N ) -  Ω (b , N ) ≤

lim B (N ) . (7.222)

A (b , N ) ≤  A (N ) , (7.223a)

B (b , N ) ≤  B (N ) . (7.223b)

Taking the limit N  →  ∞  of Eqs. (7.223a) and (7.223b), we have

lim A (N ) -  Ω (b , N ) ≤  lim A (b , N ) ≤  lim A (N ) , (7.224a)
N  —→∞  ∖ ∕  N —→∞  N —→∞

lim B (N ) -  Ω (b , N ) ≤  lim B (b , N ) ≤  lim B (N ) . (7.224b)
N  —→∞  ∖ ∕  N —→∞  N —→∞

Now, let us define

lim Ω (b , N ) = : e (b ) . (7.225)
N → ∞

As the multinomial distribution concentrates around mean for N  —  ∞ , 
it follows that lim⅛→ ∞  e (b ) = 0. Therefore, taking the limit b —  ∞  in 
Eq. (7.224a) we have

lim A (N ) ≤  lim lim A (b , N ) ≤  lim A (N )
N → ∞  b⇒  lim lim A (b , N ) = lim A (N ) . (7.226)

b— w  N → ∞  N —

Analogously, taking the limit b —  ∞  in Eq. (7.224b) we can show that

lim lim B (b , N ) = lim B (N ) . (7.227)
b — w N → ∞  N → ∞

Moreover, for any fixed b , by employing Lemma 7.5.6, we see that 
-I log(P ⅛(s^  = O ( ) , which vanishes as N  —  ∞ . Therefore, we have

lim A (b , N ) = lim B (b , N ) ,
N —>∞ N —>∞

(7.228)
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and so by taking the limit b →  ∞ , we arrive at

lim lim A (b , N ) = lim lim B (b , N ) . (7.229)
b —→∞  N —→∞  b —→∞  N  —→∞

Combining the above with Eqs. (7.226)- (7.227) we have

lim A (N ) = lim B (N ) , (7.230)
N —→∞  N  —→∞

which completes the proof.

7.5.9 Central limit theorem for multinomial distribution

Let us now prove the central limit theorem for multinomial distribution.
We start by stating the following lemma:

Lemma 7.5.8 (Cetral limit theorem for multinomial distribution). The
multinomial distribution with mean μ  = N p and a covariance matrix Σ  can
be approximated in the asymptotic limit by a multivariate normal distribution

with mean μ  and a covariance matrix Σ .

Proof. Assume X 1 . . .  X n are independent and identically distributed 
random vectors each of them with the following distribution

∏ L  r ?
Prob(X  = x ) =

if x  is unit vector, 

otherwise.
(7.231)

Then, the mean vector of X  is p  and the covariance matrix Σ  = 
diag (p ) -  p p τ . Define := X 1 +  . . .  +  X N . Then

Prob(S w  = k ) = k y N  k  P k,1 . . . P k/ . (7.232)

We thus see that a multinomial distribution arises from a sum of inde
pendent and identically distributed random variables. Therefore, using
the central limit theorem, we obtain that the distribution of k approaches 
the distribution N (^ ,E ) arbitrarily well for N  —  ∞ , which completes the 
proof.

7.5.10 Entropy difference between uniformised and 
non-uniformised embedding boxes

In this section, we show that there exists a permutation which transforms 
the total final state F N from Eq. (7.75) into a state that is uniform in 

almost all embedding boxes, leading to no dissipation up to higher-order 
asymptotics. We start with the following observations about the total
initial and final states. First, since we consider the initial state composed
of N  independent systems in identical incoherent states P n  = p ® N , 
we note that P N  ® (5n  has a polynomial number of distinct entries

with exponential degeneracy and exponentially many embedding boxes.
Second, note that according to Eq. (7.75) the entries of the embedded total 
final state, F N , are essentially given by the entries of P N  ® Gn  (plus many
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equal entries (1 -  e ) ∣ K ). Thus, F N has polynomially many distinct entries

with exponential degeneracy and exponentially many embedding boxes. 
Employing permutational freedom, we can then rearrange the entries
of F N so that they are uniform in almost every embedding box, except 

poly(N ) of them. We will denote the probability distribution over the 
embedding boxes by q and note that it is essentially equal to P n  ® G N . 
Moreover, we will denote by r ( ;) the normalised distribution within the 
∕ -th embedding box.

The next step is to write the entropy of the embedded total final state as 
the entropy of probability distribution over different embedding boxes,
H (q ), plus the average entropy of normalised probabilities within each 
box, H  (r ( ;) ),

H (F N ) = H (q ) +  ∑  q lH (r « ) . (7.233)
i

Note that whether we uniformise or not a given box, the entropy H (q ) 
does not change. Consequently, the entropy of the final state uniformised 
within each embedding box takes the form of

H  (F 1 )  = H  (q) +  ∑  q lH (r <£.), (7.234)

with r  uni representing the normalised and uniformised probability within 
the ∕ -th embedding box. Thus, the entropy difference between the uni- 
formised and non-uniformised distributions reads

H  (F 1 )  -  H  (F N ) = ∑  q i [H (r « )  -  H  (r « ) ]  . (7.235)
i

Now, note that due to the previous argument, the above sum is performed 
only over a polynomial number of boxes. Denoting the set with size 
poly(N ) as Ω , one can write

H ( C 1) -  H (F N ) = ∑  [H (r uL )  -  H (r (0)] ≤  ∑  ^≈H (r 2 i) . (7.236)
!∈Ω !∈Ω

Let us analyse the right-hand side of the above equation. First, note that
q i is exponentially small, g ,∙ ∞ exp( - N ); while H (r i) is the entropy of a 
uniform state over the dimension of the ∕ -th embedding box (equal to 
∏,∙ D^1), so it will scale linearly in N :

(7.237)

Therefore, we conclude that the entropy difference vanishes exponentially 
in N

H (F ^ i) -  H (F N ) «  ex p ( - N ) ∙ (7.238)

7.6 Concluding remarks

In this chapter, we have derived a version of the fluctuation-dissipation 
theorem for state interconversion under thermal operations. We achieved 
this by establishing a relation between optimal transformation error
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and the amount of free energy dissipated in the process on the one 
hand, and fluctuations of free energy in the initial state of the system on 
the other hand. We addressed and solved the problem in two different 
regimes: for initial states being either energy-incoherent or pure, with 
the target state in both cases being an energy eigenstate, and with the 
possibility to change the Hamiltonian in the process. For the case of 
finitely many independent but not necessarily identical energy-incoherent 
systems, we have provided the single-shot upper bound on the optimal 
transformation error as a function of average dissipated free energy 
and free energy fluctuations. Moreover, in the asymptotic regime we 
obtained the optimal transformation error up to second order asymptotic 
corrections, which extends previous results of Ref. [100] to the regime of 
non-identical initial systems and varying Hamiltonians. For the first time 
we have also performed the asymptotic analysis of the thermodynamic 
distillation process from quantum states that have coherence in the 
energy eigenbasis. As a result, we expressed the optimal transformation 
error from identical pure states and free energy dissipated during this 
transformation up to second order asymptotic corrections as a function 
of free energy fluctuations.

The obtained results can be naturally extended in the following directions. 
Firstly, one could generalise our analysis to arbitrary initial states. We 
indeed believe that an analogous result to ours will hold for such general
mixed states with coherence. That is because dephasing into fixed energy
subspaces leads to free energy change of the order O (log N ), which 
is negligible compared to the second order asymptotic corrections of 
the order O ( ∕ N ) that we focus on. In other words, the contribution of 
coherence to free energy per copy of the system vanishes faster with 
growing N  than what we are interested while studying second order
corrections.

Secondly, it would be extremely interesting to generalise the thermody
namic state interconversion problem to arbitrary final states, and see how 
the interplay between the fluctuations of the initial and target states affects
dissipation. For energy-incoherent initial and final states one can infer 
from Ref. [220] that appropriately tuned fluctuations can significantly
reduce dissipation, however nothing is known for states with coherence. 
Unfortunately, since thermal operations are time-translation covariant, 
such that coherence and athermality form independent resources [226, 
231], it seems unlikely that the current approach can be easily generalised.
Thirdly, one could try to extend our results on pure states to allow for 
non-identical systems and to derive a bound working for all N , not only 
for N  →  ∞  (i.e., replace the proving technique based on central limit
theorem by the one based on a version of Berry-Esseen theorem).

In this chapter we have also provided a number of physical applications 
of our fluctuation-dissipation theorems by considering several scenarios
and explaining how our results can be useful to describe fundamental 
and well-known thermodynamic and information-theoretic processes.
We derived the optimal value of extractable work in a thermodynamic 
distillation process as a function of the transformation error associated
to the work quality. This, together with the knowledge of the actual
final free energy of the battery system provided by Theorem 7.3.2, could 
potentially be used to clarify the notion of imperfect work [200, 232, 233],
and to construct a comparison platform allowing one to continuously



7.6 Concluding remarks 167

distinguish between work-like and heat-like forms of energy. We have
also shown how our results yield the optimal trade-off between the work
invested in erasing N  independent bits prepared in arbitrary states, and
the erasure quality measured by the infidelity distance between the final 
state and the fully erased state. This can of course be straightforwardly 
extended to higher-dimensional systems and arbitrary final erased state 
(not necessarily the ground state). Finally, we have investigated the 
optimal encoding rate into a collection of non-interacting subsystems 
consisting of energy-incoherent or pure states using thermal operations. 
We derived the optimal rate (up to second-order asymptotics) of encoding 
information with a given average decoding error and without spending 
thermodynamic resources. This provides an operational interpretation 
of the resourcefulness of athermal quantum states for communication 
scenarios under the restriction of using thermal operations.

We would also like to point out to some possible technical extensions of 
our results. Firstly, we used infidelity as our quantifier of transformation 
error, but we expect that similar results could be derived using other 
quantifiers, e.g., the trace distance. Secondly, our investigations were 
performed in the spirit of small-deviation analysis (where we look for 
constant transformation error and total free energy dissipation of the
order O ( ∕ N )), but possibly other interesting fluctuation-dissipation
relations could be derived within the the moderate and large deviation
regimes. Thirdly, our result for pure states is limited to Hamiltonians
with incommensurable spectrum, but we believe this is just a technical 
nuisance that one should be able to get rid of. Lastly, within the framework
of general resource theories, it might be possible to derive analogous 
fluctuation-dissipation relations, but with free energy replaced by a
resource quantifier relevant for a given resource theory.



8 Quantum catalysis in  cavity 
quantum electrodynamics

The effect of catalysis involves using an auxiliary system (a catalyst) to 
enable a process that would either not occur spontaneously or would 
occur very slowly. Catalysis manifests across a variety of fields (see 
e.g., [234]), including biological processes activated by enzymes, the 
speed-up of chemical reactions, and the synthesis of nanomaterials.

More recently, the phenomenon of catalysis has also become relevant in
the context of quantum information; see recent reviews [103, 235]. First
examples focused on entanglement manipulation [88, 236- 243], and then 
spread to quantum thermodynamics [56, 62, 193, 244- 254], coherence
theory [255- 260] and other areas [261- 266]. These results are typically
formulated within the framework ofquantum resource theories [60]. This 
abstractapproachisparticularlyusefulforcharacterisingthefundamental 
limits of manipulating quantum resources, including scenarios involving
catalytic systems of arbitrary complexity.

An interesting question is whether quantum catalysis is also relevant and
useful in a more practical context, potentially even in experiments. Here
we investigate quantum catalysis in a paradigmatic setup of quantum 
optics, namely the Jaynes-Cummings model [267- 269], where a two-level 
atom interacts with a single-mode optical cavity. In this chapter, we 
uncover a catalytic process enabling the generation of a non-classical 
state of light in the cavity, using the atom as a catalyst. Specifically, we
consider the cavity to be initially prepared in a “classical” coherent state, 
and uncorrelated to the atom. By carefully setting the initial state of the
atom and the interaction time, we obtain a final state such that (i) the 
atom is back in its initial state exactly, and (ii) the state of the cavity
is now non-classical, i.e., featuring Wigner negativity or sub-Poisonian
statistics.Hence,non-classicaliltyofthecavityhasbeengeneratedwithout 
perturbing the state of the atom (see Fig. 8.1). The process is catalytic and 
the atom could be re-used, for example by coupling it to another cavity.

We investigate the mechanism of this catalytic process, and identify two
crucial ingredients. First, the final state of the atom and cavity must 
feature correlations. Second, the evolution of the state of the catalyst 
must involve quantum coherence (i.e., superpositions of the energy 
basis states). The latter is an interesting aspect, as typical instances of
quantum catalysis in resource theories involve only diagonal states (i.e.,
without coherence), so that they can be understood as a stochastic process 
involvingthe probabilitydistributionsofthe systemand catalysis.Instead
here, the system and catalyst experience a genuinely quantum evolution. 
This is a novel instance of the effect of coherent quantum catalysis, recently 
investigated in quantum thermodynamics [254].

Before proceeding, it is worth discussing previous works in quantum 
optics that relate to the concept of catalysis. Notably, the pioneering
proposal for quantum computing in ion traps [270] (see also [271, 272])
considers two spin qubits that become entangled via an interaction 
with a cavity that can be considered catalytic [103]. Another relevant
direction is that of “multi-photon catalysis” (see e.g., [273- 276]) which
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Figure 8.1: Quantum catalysis in the Jaynes-Cummings model. (a) An atom (the catalyst C) 
interacts with a single-mode optical cavity (the system S), initially prepared in a “classical”
coherent state. (b) We consider the evolution U  over a well-chosen time interval (from 
t = 0 to t = τ ) such that (i) the final state of the cavity is non-classical, and (ii) the atom is
returned to its intial state exactly. Hence, non-classicality has been generated via catalysis.

is a heralded catalytic process, where the catalyst is returned only with 
some probability. In contrast, our catalytic protocol is deterministic.

8.1 Setting the scene

Consider a setup comprising a system (S) initially prepared in a state p s  

and a catalyst (C) in an initial state χ c . The total system SC is assumed to 
be closed and evolves via an energy-conserving process for some time τ . 
This evolution is represented by the unitary U  = ex p ( - i H s c τ ), where 
H sc denotes the joint Hamiltonian. Consequently, the final state of the 
total system is given by σ s c  := U (p s  ® X c )U + .

The evolution is said to be catalytic when the catalyst is returned in exactly 
the same state as it was initially prepared. Formally, we demand that

σ c  := Trs [Q (p s  ® Xc) U + ] = χ c , (8.1)

which we refer to as the catalytic constraint. Satisfying this constraint 
typically requires to carefully choose the initial states of the system p s  

and the catalyst χ c , as well as the interaction time τ .

The main goal of a catalytic evolution is to induce an interesting local 
dynamics on the system S, i.e.,

p s  →  σ s  := Trc [Q (p s  ® Xc) U + ] , (8.2)

while leaving the state of the catalyst unchanged. Notably, it is possible 
to induce an evolution on S [as in Eq. (8.2)] that would not be possible
without the presence of the catalyst.

8.1.1 Jaynes-Cummings model

In this Section, we discuss the phenomenon of catalysis in the Jaynes- 
Cummings (JC) model, describing the interaction between a single-mode 
optical cavity and a two-level atom [267] (see Fig. 8.1a).
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We choose the cavity to represent the system S, while the atom will 
play the role of the catalyst C . The cavity is characterised by the bosonic
annihilation operator a  with the photon number operator n s  := a ra . 
The atom has energy levels |g ) and |e ) and its energy is captured by 
σ z = |e){e | -  |g )(g |. We work in the resonant regime, where the atom 
and cavity have the same frequency ω . The evolution is governed by the
JC Hamiltonian, which in the rotating-wave approximation reads

⅛ c  = ω a ra  +  y ¾  +  g  (σ+a  +  σ - α+)  , (8.3)

where g  is the coupling constant and σ +  = | e }(g | and σ -  = |g } (e  | are the
raising and lowering operators. Note that, as we focus on the resonant 
regime, the evolution specified by Eq. (8.3) is energy-preserving.

The Jaynes-Cummings interaction Hamiltonian H [n t = g  ( a σ +  +  a r σ - ) 
couples pairs of atom-field states { |n  +  1, g ) , |n ,  e ) } . Consequently, the 
Hamiltonian Hsc decouples into a direct product of 2 ×  2-matrix Hamil
tonians, i.e., H s c  = φ ∞ = 0 H ^ C , where

(8.4)

Figure 8.2: Jaynes-Cummings ladder. Res
onant atom-light interaction lifts the 
degeneracy of the unperturbed states{ |n ,  e ) , \n +  1, g } } . The level splitting 
μ n  = 2gy∣n  +  1 depends on the number
of photons.

The eigenvalue problem for this Hamiltonian yields the eigenfrequen- 
cies ω ±0 = (n +  ∣j ω  ±  1 μ n , (8.5)

where μ n = 2 g y∣n  +  1 is the π -photon Rabi frequency. In the resonance 
regime, the corresponding eigenstates are:

1 1  
∖n ,  + ) = -  (|n  +  1 , g ) +  ∖n , e »  , ∖n ,  - ) = -  (|n  +  l , g )  -  [n , e ) ) .

2 2
(8.6)

The eigenstates |n ,  ± )  are referred to as dressed atom states. The un
perturbed atomic eigenstates, denoted as |g ) and | e ) , are modified (or 
'dressed') due to their interaction with the cavity field, resulting in a 
shift of their eigenfrequencies by an amount that is determined by the 
strength of the coupling, as illustrated in Fig. 8.2.

Given that we know the eigenvalues and eigenstates of the Jaynes-Cummings 
Hamiltonian, the unitary time evolution operator U (t ) = e - lHt takes on 
the form of

U (t ) = e iωt ∖0 ,g '){0 , g ∖

∞  ( ∕ ∕  t  I ∖+  X l, e - ;(" + 2)ωt cos  |n  +  1, g X n  +  1, g )(n , e |
n = 0 -  i sin (|n  +  1, g )(n , e  | +  !n , e )(n  +  1, g |) |. (8.7)

The unitary operator (8.7) describes the full dynamics of the Jaynes- 
Cummings model. In particular, we derive the final reduced states of
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the cavity S and the atom C, and explicitly determine the set of atomic 
states that satisfy the catalytic constraint [Eq. (8.1)]. Here, we will omit 
the technical details of the derivation and instead focus on the discussion 
of our results (see Sec. 8.5.1 for the derivation of the reduced states of 
the system and cavity, and Sec. 8.5.2 for the solution of the catalytic 
constraint.).

Our objective is to catalytically generate non-classical light in the cavity. 
To investigate the possibility of doing so, we will use two complementary 
figures of merit as non-classicality witnesses.

8.1.2 Figures of merit

Second-order coherence

As a first figure of merit, we quantify non-classicality via the second-order 
auto correlation function (or simply second-order coherence) of the final 
state of the cavity [277], i.e.,

(8.8)

where <∏s} p :_  Tr[p s ∏s] ∙
Physically, the concept of second-order coherence can be interpreted as 
a response to the following question [278]: “If I have detected a photon or
multiple photons at time t , what is the probability or correlation o f  detecting 
another photon or a similar number o f photons at a later time t +  τ  Depending
on the type of light source, this question yields different answers∙

To delve deeper into the physics behind the answer to such a question, 
let us discuss the Hanbury Brown and Twiss experiment [279]∙ Firstly, 
let us remember that quantum theory views a beam of light as a stream 
of photons, with the measurement of beam intensity interpreted as the 
counting of photon arrivals at a phototube∙ In the Hanbury Brown and 
Twiss experiment [see Fig∙ 8∙3a for a schematic representation], two
detectors, D i  and D 2, count the number of photons transmitted through 
or reflected from the mirror M  . Consider a series of measurements 
where the numbers of photons, m and ∏2 , counted by the two detectors 
during a constant time interval, are recorded∙ If the series of identical
experiments is sufficiently long, each detector registers the same average
number of counts, ( m )  _  (∏2 } ∙ However, the number of counts in each
detector in a single run is not necessarily the same∙ In the quantum realm, 
each incident photon either passes through the half-silvered mirror or is 
reflected from it∙ Consequently, the two split beams are not exact replicas 
of each other; it is only their average properties over an extended series 
of experiments that are identical∙

When a beam of light from an ordinary source is directed onto a pho
tomultiplier tube, which records the arrival of photons, an intriguing 
phenomenon known as photon bunching can be observed∙ In this phe-
nomenon,thephotonsdetectedbythephototubedonotscatterrandomly 
in time; rather, they are detected in the form of clusters or bunches [see

Figure 8.3: Hanbury Brown and Twiss ex
periment. (a) A light source S  emits pho
tons that are transmitted through or re
flected by a m irror M ∙ Two detectors,
namely D i and D 2 , count the number
of photons, and the correlation between
them is determined∙ Photon detections 
are recorded as a function of time for
(b) bunching (chaotic light), (c) random
ness (e∙g∙, a coherent state, laser beam),
and (d) antibunching (e∙g∙, light emitted 
from a single atom)∙
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Fig. 8.3b]. Computing the degree of second-order coherence of ther
mal (chaotic) light yields a value of 2. This number indicates that a 
thermal light field has super-Poissonian statistics. However, if the light 
source is now prepared as coherent light, it exhibits no classical intensity 
fluctuations or photon bunching. As a result, the counts in the two
detectors are uncorrelated, and only random coincidences occur, leading
to a correlation function equal to g (2) = 1 [see Fig.8.3d]. Coherent light
exhibits Poissonian statistics, yielding random photon spacing. Interest
ingly, within such an experimental setup, we can observe a phenomenon 
known as antibunching, a counterpart to photon bunching. This unique 
type of light is generated through nonlinear interactions of laser light 
with matter and is solely compatible with the quantum theory. Unlike 
coherent light, where the degree of second-order coherence equals one, 
antibunched light exhibits a degree of second-order coherence below
unity, i.e., g (2) <  1 [see Fig. 8.3b]. Consequently, it is considered to be
anticorrelated or antibunched, highlighting its quantum nature. In this
case, the light field follows a sub-Poissonian photon statistics, which 
means that the photon number distribution has a variance that is less
than the mean. Such a discussion can be summarised as follows:

(8.9)

Wigner logarithmic negativity

Our second figure of merit is the Wigner logarithmic negativity (WLN) [111, 
280], defined as

1: A resource theory for continuous- 
variable systems has been proposed [111, 
282], which quantifies both quantum 
non-Gaussianity (defined as the convex 
hull of Gaussian states being the set of 
free states) and Wigner negativity (with 
states having positive Wigner functions 
considered as free states). In both cases, 
the W igner logarithmic negativity is a 
resource monotone.

Negativity of the Wigner function has long been recognised as an im
portant quantum feature, especially the volume of the negative part,
which has been introduced as a nonclassicality quantifier [281]. The cru
cial aspect of the Wigner function's logarithmic negativity (WLN) is its 
property as an additive monotone1, as the Wigner function of separable 
states can be factorised. Additionally, it is computable through numerical 
integration.

Since the Wigner function is normalised, it is greater than zero (W >  0)
whenever W p (x ,  p ) is negative for some region of the phase space.

8.2 Generating non-classical states of light

The task we would like to achieve catalytically is the generation of non
classical light in the cavity. We consider an initial state of the cavity that
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Figure 8.4: First illustrative example. Catalytic process for generating non-classicality in the
cavity, as captured by the second-order coherence. The time evolution, g (2) ( t ) := g (2) (tfs ( 0 ) ,
is shown in the top panel, while the bottom panel displays the change of the atomic state,
measuredvia the distance Δ ( f ) := ∣χ c  -  &C ( 0 ∣ 1 concerningthe initial state. The orange stars 
indicate the final time (τ  ≈  40) for which the evolution is catalytic. The atom returns to its 
initial state (Δ (τ ) = 0), while non-classicality hasbeen activated, g (2) (τ ) ≈  0 .5 < g (2) (0) = 1. 
The values of the parameters are: a  = 1/V2, ω  = 2π, g  = π.

is classical, namely a coherent state

(8.12)

This state represents the closest approximation to an ideal, perfectly 
stable, classical field with a well-defined amplitude and phase. Coherent
states exhibit Poissonian statistics with the mean number of photons(∏s }∣α > = ∣«  ∣2. The second-order coherence for a coherent state is equal to 
unity, i.e., g (2) (∣a } ( a ∣) = 1, and, since the Wigner function of a coherent
state is Gaussian, it implies that it is everywhere non-negative, resulting 
in W = 0.

Our goal is to find an initial state of the atom χ c  and an interaction 
time τ  such that the evolution is catalytic [i.e., satisfying Eq. (8.1)], while 
also leading to a final state of the cavity σ g that exhibits non-classicality. 
Below, we present two illustrative examples of such processes, using two
complementary figures of merit to witness non-classicality. A detailed 
analysis of these examples will be discussed in the next section.

In Fig. 8.4, we present the catalytic activation of non-classicality. The 
upper plot depicts the time evolution of g (2) . Catalysis occurs at time 
τ  ≈  40, indicated by the orange stars. Starting from the initial state 
of the cavity p s  = ∣α }(α ∣s (with a  = 1/V2), which has g (2) (p s ) = 1 as 
any coherent state, we obtain a final state o⅛ for which g 2) (σ⅛) ≈  0 .5, 
indicatingnon-classicality.Simultaneously,wemonitorthetime evolution 
of the atomic state by calculating the trace distance to its initial state,
i.e.,

Δ (f ) :=  ∣∣χ c  -  σ o (f ) l ∣1 . (8.13)

We observe that at the final time τ  ≈  40, we find Δ (τ) = 0, indicating that
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Figure 8.5: Second illustrative example. Catalytic generation of Wigner negativity. Panel (a) shows the time evolution of the Wigner 
logarithmic negativity W , as well as the Wigner function at initial and final time τ . Non-classicality is clearly generated, while the process 
is catalytic. Panel (b ) shows the trajectory of the atomic state, i.e., the catalyst C , on the Bloch sphere. The initial and final state coincide 
(red dot). The values of the parameters are: a  = 1/V2, ω  = 2π and g  = π.

the atom has returned to its initial state

~ t 0 .16 0 .36/
X c  ≈  0 .36/ 0 .84 (8.14)

as required for catalysis.

As a second example, we demonstrate how Wigner negativity can be
catalytically generated. Starting from a coherent state p s  = |a ) { a ∣s  which 
has a positive Wigner function, hence W (ps ) = 0, we aim to obtain a 
final state of the cavity σ s  with W (σ s ) >  0, therefore certifying its non-
classicality. In Fig. 8.5, we present an example of such an evolution. First,
we plot WLN as a function of time t . At the final time τ  ≈  5, we obtain a 
state σ s  that has W (σ s ) ≈  0 .1, and we plot its Wigner function. To verify 
the catalytic nature of the evolution, we display the evolution of the 
atomic state via its trajectory in the Bloch sphere. Crucially, the trajectory 
is closed, as the initial and final state of the atom exactly coincide (red
dot). In this example, the atom was prepared in the following state:

~  t 0 .154 6 .84 .10- 4i ∖
X c  ≈  - 6 .84 .10- 4i 0 .846 . ( . )

Note that the two examples we analysed are complementary. The first
one demonstrates the generation of non-classicality as witnessed by the
g (2) function, while the final state o⅛ has a positive Wigner function. In 
the second example, the final state o⅛ has a negative Wigner function, 
despite g (2) (σ) >  1.

8.3 Mechanism of catalysis

Here, we present a more intuitive understanding of quantum catalysis by 
identifying a mechanism that allows for the activation of non-classicality.
We start by stating the following lemma:
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Lemma 8.3.1 (Higher order moments). Let O s c  = O s  ® l c  +  I s  ® O c  

be an additive and conserved observable on the joint system SC. In a catalytic 
protocol governed by a unitary operator U , such that σ s c  = U (p s  ® χ c )Ĥ l̂, 
where σ c  = χ c , and [H , O s c ] = 0, the k -th moment o f the observable O  on 
the system s satisfies:

( O ks ) σ = ( O ks ) p +  Tr[Δ ⅛(p s c  -  σ s c ) ] , (8.16)

where
Δ k = ∑  [ ^ O ks ~ 1 ® O f  (8.17)

Proof. Let us use the short notation O s  = 0 $  ® 1 C  and O C = 1$ ® O C . 
Then, to calculate ( 0 $ )σ , we write O s e  as O $C = 0 $  +  O C +  Δ ⅛, where 
Δ ⅛ = O $C -  0 $ -  O C as given by Eq. (8.17). Thus, the fcth moment of the 

observable O $C in the state A is given by

( O kse }A = tr (o $ A  +  tr (θ C A  +  tr(Δ ⅛ A ) . (8.18)

Next, re-writing 0 $ as a function of O s e , O C , and Δ ⅛ allows one to 
express ( 0 $ )σ as

( 0 $ )σ = tr ( o $ C σ) - tr( θ C σ ) - tr(⅜ σ) = b ( o $ C p) -  tr (θ C ρ) -  tr(⅜ σ )  
= t r (0 $ p) +  tr (θ C p) +  tr(Δ fcp ) -  tr(Δ k σ ) -  tr (θ C p } .  (8.19)

In the first line, we first used the fact that [H , O $ C ] = 0 and that all 
moments of C are preserved. This allows one to replace σ 's to p 's. Second, 
we use Eq. (8.16) to re-write tr(O $ C p ) . Finally, simplifying Eq. (8.19) gives

( 0 $ )σ = ( 0 $ ) p +  Tr[Δ ⅛(p$C -  n $C )] . (8.20)

□

In the Jaynes-Cummings model, the energies of the cavity $ and the 
atom C are specified by local number operators n $ and n C , respectively. 
Hence, the total energy of both systems is proportional to the number 
of excitations, and described by a joint operator n $C := n $ +  n C . Since 
the JC evolution U (t ) that takes p $  ® χ C into n $C conserves the total 
energy, we have that [H (t ) , n $ +  n C ] = 0 for all t . When the evolution is 
catalytic, all moments of n C must remain unchanged, in particular (n C }x  

= (n C } a . Consequently, the first moment of n $ is also preserved, that is (n $ )p = (n $ ) a . Importantly, this is not the case for higher moments of n $ . 
Particularly, from Lemma. 8.3.1, the second moment satisfies

(8.21)

Hence, the second moment in the final state of the cavity, (n $ }a, can be
come smaller (or larger) than the second moment in the initial state (n $ )p . 
This means that using a catalyst allows for modifying the distribution of 
the local observable n $ of the system $ : while its average must remain the
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same, the higher moments can change. Importantly, this can only happen
if the system becomes correlated with the catalyst, i.e., (π ∣}σ ≠  (π ∣}p 
only if σ  ≠  σ∣ ® σ c  [as seen from Eq. (8.21)]. Thus, these correlations are
essential for observing quantum catalysis. Note that the above analysis 
also applies beyond the JC model to arbitrary observables and moments.
The only requirement is the conservation of local observables and the
catalytic constraint.

The above analysis will also serve as a basis for the characterisation 
of the parameter regime leading to catalysis. In particular, we derive a
necessary and sufficient condition for satisfying the catalytic constraint 
of Eq. (8.1). This, in turn, allows one to obtain an analytic expression for
the second-order coherence g 2, which is based on the second moment (π ∣)σ . To do so, let us consider an arbitrary initial state of the atom:

Tc = q  |g X g | +  r  |g ξ e  | +  r * | e X g | +  [1 -  q ]  | e ><e | , (8.22)

as well as a general initial state of the cavity p ∣ = ∑ ∞ m p n,m ∖n ){m | with 
p n := P n ,n . Combining Eq. (8.21) with the fact that mean energy of the 
cavity is conserved, i.e., (π ∣}σ = {n ∣) p , we arrive at

2
g (2) (σ∣) = g (2) (p∣) -  2 B π ∣ ® πc >σ - (1 -  q ) ( n ∣} p ] , (8.23)

(n ∣yp

where we have

∞<π ∣ ® n c ) a  = ∑  n  [(1 -  q )P n Cn +  +  q P n+ 1s%] , (8.24)
n=0

w iths n := sin(g t √ n  +  l ) , c n := cos(g t √ n  +  l )  andy n := 2 Im (r p n+ 1,n)s n c n 

In order to satisfy the catalytic constraint, we obtain a set of equations
for the components of the atomic state. Decomposing the diagonal term
as = ^inc +  tfcoh, we get

(8.25)

with Q  := ∑ ∞ =0 (p n +  p n + 1)s 2. Interestingly, q inc is specified by the 
occupations of p s , while q coh depends on its coherence in the Fock basis. 
Moreover, the off-diagonal term r  satisfies

(8.26)

with a ι being auxiliary functions defined as

(8.27)

For a detailed derivation of Eqs. (8.27) see Sections 8.5.1 and 8.5.2.

Importantly,Eqs(8.25) and(8.26) arenecessaryand sufficientforensuring 
the catalytic constraint of Eq. (8.1). In combination with Eq. (8.23), we
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can now characterise analytically the effect of non-classicality activation
for the g 2 function in the catalytic regime. This is done for finding the 
parameters (initial states and interaction time) for the first illustrative 
example of a catalytic process (see Fig. 8.4) . For the second example,
we use again such analytic results to ensure the validity of the catalytic 
constraint, while the Wigner functions are computed numerically.

8.4 How general is catalysis?

An interesting problem is to understand how typical the effect of catalysis 
is. Here we discuss different aspects of this question.

To begin with, note that it is not obvious a priori whether the catalytic 
constraint of Eq. (8.1) can be satisfied. However, due to the quantum 
version of the Perron-Frobenius theorem, every quantum channel has 
at least one positive semi-definite fixed point [283] . Now, for a fixed 
input state p s  and a fixed interaction time τ , the state of the atom C 
evolves according to an effective quantum channel %c →  Trs [Q  (τ)(p s  ® 
χ c ) U + (τ)]. Consequently, there always exists an initial state χ c  which is
left unchanged by this channel, hence providing at least one solution to 
Eq. (8.1).

Next, one might wonder how often a catalytic evolution leads to a non
classical state of the cavity. In particular, when preparing the cavity in 
a coherent state |a } , does there always exist a state of the catalyst χ c

which allows to generate non-classicality? To address this question, we
investigate the minimum value of g (2) of the final state σ s , as a function 
of |a  | [see Fig. 8.6a]. This is done by combining Eqs. (8.23-8.24) and (8.25
8.26), and imposing a bound on the final time, i.e g τ  ≤  100. For a  ∈ (0, 2], 
we observe that g (2) (σs ) <  1, indicating that non-classicality generation
via catalysis is generic here. Note that when the initial coherent state has
low energy, the final state of the cavity is close to the intial one, but with a 
slightly reduced variance, leading to a value of g (2) approaching zero.

Let us now ask the converse question, i.e., whether every atomic state can 
lead to a catalytic evolution. A first observation is that pure states cannot 
act as useful catalysts in general, and in particular cannot catalytically 
generate non-classicality. Indeed, a key ingredient for catalysis is the fact
that the system and catalyst become correlated [see Eq. (8.21)], which is 
impossible when the state of the catalyst is pure.

To further explore this question, we also investigated which states of the
atom can catalytically generate sub-Poissonian statistics (i.e., g (2) <  1), 
given an initial coherent state of the cavity and a limited interaction time 
g τ  ≤  100. In Fig. 8.6b, we display an example of such a set of catalytic 
states. Interestingly, this set appears to contain states that are almost pure.
The structure of the catalytic set is highly non-trivial, and, in particular,
we observe a strong dependence on the initial state of the cavity. This
leads to the following question:
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Figure 8.6: Which states lead to catalysis? Panel (a) shows the minimal value of g 2 obtained as 
a function of the amplitude |a  | of the initial coherent state of the cavity p s  = |a ) { a  |s . The 
orange star corresponds to our first illustrative example. Panel (b) displays the atomic states 
(in the y -  z plane of the Bloch sphere) that satisfy the catalytic constraint and generate 
non-classical states, for an intial coherent state a  = 1 ∕  V2. The colour represents different 
values of g (2) < 1. We impose a limit on the interaction time τ  ≤  100 and take 106 samples. 
In both panels, parameters are ω  = 2π, g  = π .

Which states of the atom allow to generate non-classicality?

We refer to the set of all atomic states that satisfy Eq. (8.1) as the set of 
catalytic states. Formally, one can define it as follows:

cC := { ω c  I ω c  = T ⅛ [U (τ)(p s  ® li'c)U + (τ)] , τ  ≥  θ} . (8.28)

To explore the geometry of this set, we characterise the catalytic set
for three initial coherent states of the cavity corresponding to a  ∈{ 0 .2 , 1 ∕  2 , 25} . The results are presented in Fig. 8.7, where the catalytic
set is shown in grey. Additionally, we determine which states in the 
catalytic set can generate non-classicality, focusing on the g (2) function. 
Similar to Fig. 8.6b, we represent these states in color, with the latter
indicating thelevel of non-classicalitybeing generated.Interestingly, these
sets vary significantly with | a  |. Moreover, when | a  | is large, catalytic 
states are distributed close to the equatorial plane of the Bloch sphere,
and we could find no instance where non-classicality is generated. This 
can be understood by noticing that the atom is “too small” to significantly
perturb the field. Furthermore, when the initial state of the cavity is 
prepared as an incoherent mixture of Fock states, the set of catalytic 
states is diagonal and lies along the z axis.

Finally, one can ask what happens when the initial state of the cavity 
is not a coherent one. Let us start by examining Eqs. (8.47) and (8.48)
under the assumption that the initial state of the cavity is an incoherent
mixture of Fock states, i.e., p s  =  ∑ n,m p n,m | n }{m  | with p n,m = 0 if n  ≠  m .
In this case, from Eqs. (8.25) and (8.26), we can infer that the only feasible
states of the catalyst are those with ^coh = 0 and r  = 0. Consequently, 
the atomic state is incoherent in the energy basis and its ground state 
occupation takes the form of

(8.29)
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Figure 8.7: Set of catalytic state for different initial state preparation. Atomic states (projection of the y  — z plane of the Bloch ball) that 
satisfy the catalytic constraint (gray) for (a) a  = 0 .2, (b) a  = 1 ∕V 2 , and (c) a  = 25 are highlighted by a uniform gradient if they produce 
g 2(σs ) <  1 All panels were generated by imposing a limit on interaction time with τ  ≤  100 and taking 106 samples. The parameters are 
ω  = 2π and g  = π.

This leads to the following theorem:

Theorem 8.4.1 (Fock states under catalytic transformations). The non- 
classicality of a pure Fock state is non-decreasing under catalytic evolution

Proof. Proving that the second-order second-order coherence of a Fock
state p s  = | k } (k  |S , cannot decrease under a catalytic evolution is equiva
lent to show the quantity

(8.30)

is nonnegative. This will be accomplished by showing that the following
inequality holds:

Tr [ (a +2fl2)(σ s  — p s ) ] ≥  0 . (8.31)

In what follows, we omit the index S as well as any explicit reference to
the variables' dependence on time. When the initial state of the cavity is 
a Fock state, then Eq. (8.39) implies that the state of the cavity after the
catalytic evolution is given by

σ = [(1 — q ) cos2 (g t  √ k  +  1̂  +  q  cos2 ( g f √ fc)] ∣fcχfc∣
+  q  sin2 ( g t  √ k ^  ∣k  —1)(k  —1∣ +  (1 — q ) sin2 ^ g f√ fc +  1) ∣k  +  1)(fc + 1∣ , 

(8.32)

where q  is determined by Eq. (8.29), which for this particular case takes 
the form:

By substituting Eq.(8.33) into Eq.(8.39) and introducing the notation
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(8.35)
With these results at hand, we can manipulate Eq. (8.31) to obtain

Thus, we conclude that second-order coherence g (2) can only increase 
during a catalytic processes involving a pure Fock state, i.e.,

g (2) (n ) -  g (2) (p) ≥  0 . (8.37)

□

However, note that the above result is only valid for pure Fock states.
For an incoherent mixture of Fock states, we observed that catalysis can
further boost non-classicality (see Section C-2 for details).

8.5 Derivation of the results

The first part of this Section provides the eigenproblem solution for the
Jaynes-Cummings model (for further information, see references [284, 
285]). In the following, we derive the final reduced states of the cavity
S and the atom C, and explicitly determine the set of atomic states that
satisfy the catalytic constraint [Eq. (8.1)].

8.5.1 Reduced states of subsystems

The following unitary operator describes the dynamics of the Jaynes-
Cummings model in resonance and under the rotating-wave approxima-
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tion:

After the interaction, the joint system σ s c (t ) = U (t )(p s  ® X c )U  + becomes
correlated. Let the cavity and the atom be prepared in general mixed states,
i.e., p s  = ∞ m=0 p n,rn |n )(m | and χ c  = q  |g X g | +  r  |g }(e | +  r * |e X g | +  (1 -  
q ) |e X e |. Then, the reduced state of the cavity at time t is obtained 
by taking the partial trace over the atom's degrees of freedom, i.e., 
σ s (t ) := trc [σs c (f )] . More specifically,

The atomic state is obtained by marginalising over the photonic degrees
of freedom, i.e., χ (t ) := trs [σ s c (01, which leads to

X c (f ) = q (t ) | g X g | +  r (t )  |g ><e | +  r * ( f)  |e X g | +  [ 1 -  q (t )] |e } ( e | ,  (8.40)

Note that we identify r  := r (0) and q  := q (0) in what follows. The 
coefficients q (t ) and r (t ) are given by

∞

q (t ) = < t ∑  P nC2n - 1 +  (1 -  q )p n s 2n +  2Re[i r p n+ ι , n ]s n c n , (8.41)
π = 0

∞  ∞  ∞

r (t ) = - i e ιωt p n,n+ 1 s n c n +  r e ιωt p n c n - ι  c n +  r* p n,n+ 2 s n s n + ι )
n=0 n=0 n=0

∞+  i e ιω tq  ∑  p n,n+ ι s n [c n - ι  +  c n ] . (8.42) 
π = 0

8.5.2 Catalytic constraint

Here we determine the set of atomic states that evolve catalytically by
explicitly solving the catalytic constraint from Eq. (8.1). More specifically,
we are looking for the solution to the following operator equation: 

χ c (τ) = Trs { U (τ )[p s  ® T c (τ )]Q (τ)+ } , (8.43)
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for a fixed time τ . From this point forward, we will abbreviate the 
diagonal elements of the state p s  as p n := p n,n . To obtain the set of states
that satisfy Eq.(8.43), we first define the auxiliary functions:

Note that a i = e lωt a ι . Next, we observe that Eq. (8.43) gives rise to a set 
of two equations with two variables. By considering the ground state 
occupation q (t ), we find that the states satisfying Eq. (8.43) are given
by:

(8.45)

(8.46)

whereas the coherence r (t ) obeys the equation

r (t )a  1 (t ) +  q (t )a 2 (t ) +  r 2(t )a 3 (t ) +  a 4 (t ) = 0 ,

whose solution is given by

a3(t)a*4 ( t ) -  a ↑( t ) a 4 (t) ⅛ (t ')a*2 (t') -  a ∖{t')cm(t ) . .  .o _  r ( )  = 1 a 1 (t ( ∣2 - ∖a3(t ) ∣2 +  1 a1(t ( ∣2 - ∣a3(t ) ∣2 q ( γ  ( . )

Substituting Eq. (8.47) into Eq. (8.45), we find that

(8.48)
Therefore, for a given value of g  and time τ , Eqs. (8.47) and (8.48) uniquely
determine a state of the catalyst.

8.5.3 Second moment of photon statistics in the catalytic 
Jaynes-Cummings evolution

Here,we use Lemma.(8.3.1) to obtainanexplicitexpressionforthe second 
moment in a catalytic evolution as specified by the Jaynes-Cummings 
Hamiltonian. We start by considering the second moment of photon 
statistics

(8.49)
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where q  := <e |χ e |e > is the excited-state occupation of the catalyst, σ  = 
U (p s  ® X c )U^+ and Trg [σ] = X e ∙ Let us focus on the following term:

(n s  ® |e )< e∣e >σ = Tr [Q ‰  ® |e )< e∖e ) U (p s  ® χ e ) ]
∞

= ∑  k  Tr [Q + 1k , e ) < k , e  | U (p s  ® χ ) ] , (8.50)
k=0

Using Eq∙ (8∙7), we can write

U + 1k ,  e )  = e i(k+ 2 *)χ t (c k  |k , e > -  i s k  |k  +  1, g > ) , (8.51)

Substituting the above result into Eq. (8.50) leads to

∞

{n s  ® |e )< e|e >a  = Σ  k  [(1 -  q )ck P k ,k  +  2s k c k Im (p k + ι r k r ) 
k=0 +  (1 -  q )s 2k P k + 1 ,k + 1 ] . (8.52)

8.5.4 Boosting non-classicality via a catalytic process for 
incoherent mixtures of Fock states

For an incoherent mixture of Fock states p  =  ∑ n p n |n ><n |, the second- 
order coherence is given by

(8.53)

Assuming that the initial state of the cavity is prepared in a state p s  = 
4  |0><0 | +  4  |2><2 |), then its second-order coherence is g (k) (p s ) = 2/3.
According to Eq. (8.39), the state of the cavity after the catalytic protocol
(at time t = τ ) takes the form of

where q  is determined by Eq. (8.29):

Using Eq. (8.53), the second-order coherence for the final state is given
by

g (2‰ )  = 2 { q  cos2 ( g τ √ 2 ) +  (1 -  q ) [1 +  2sin2 ( g τ √ 3) ] } .  (8.56)

(8.55)

Therefore, for g τ  = 7 .5π , we obtain g (2) ≈  0 .505, indicating that non- 
classicality in the mode was catalytically increased.



184 8 Quantum catalysis in cavity quantum electrodynamics

8.6 Concluding remarks

In this chapter, we presented a catalytic process for generating non
classical states of light in an optical cavity. Our work shows that quantum 
catalysis, a concept so far explored in the abstract framework of resource 
theories, is relevant in a practical context. Furthermore, our protocol
could potentially be implemented in state-of-the-art experimental setups
[286- 288], e.g., in cavity QED [289, 290] or trapped ions [291, 292]. Beyond 
proof-of-principle experiments, it would also be interesting to investigate
whether such a catalytic protocol offers a practical advantage. Indeed, 
the key point of catalysis is that the catalyst (here the atom) is returned 
exactly in the same state as it was initially prepared. Hence the same
atom could in principle be used repeatedly for activating non-classicality
in different cavities, or in the same cavity, but at different times. In the 
future, it would be interesting to uncover further instances of quantum 
catalysis in realistic setups, e.g. exploring various platforms and models 
in quantum optics, as well as for applications in quantum information 
and metrology.

Another relevant aspect of our work is the fact that the catalyst (atom) 
is, in general, a coherent quantum system. Specifically, the activation of 
non-classicality requires a state of the atom that, during its evolution, 
features coherence with respect to the energy basis. In this sense, it is an 
instance of coherent quantum catalysis [254]. This contrasts with most 
previous examples of quantum catalysis, and a deeper understanding of 
the role of coherence in catalysis is an exciting future direction.

Finally, we have observed that non-classicality can only be activated if
the atom develops correlations with the field in the cavity. This naturally
leads to the question of whether the amount of correlations established 
can be related in a quantitative matter to the amount of non-classicality 
generated in the cavity.
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Quantum thermodynamics arose from a desire to formalise and generalise 
the concepts of macroscopic thermodynamics to the quantum realm. Its 
emergence evolved naturally with our increasing ability to manipulate 
and control systems at finer scales. This led theoreticians to probe 
the intricate dynamics of small-scale systems, asking how quantum 
phenomena, such as entanglement and coherence, might affect classical 
thermodynamic formulations. However, theoretical inquiries were not 
the sole catalyst for the advent of this field. As we have witnessed 
the race towards so-called "quantum technologies", understanding the 
path to optimality brings us closer to the idea that one day we might 
develop devices that outperform current ones by using purely quantum 
effects. Since then, joint theoretical efforts from quantum optics, statistical 
mechanics, and quantum information theory are bundled to pave the 
way for a new era of quantum engineering ahead.

This thesis asks simple questions that naturally arise when we attempt to 
probe the quantum realm thermodynamically. By relying on a model- 
independent approach and using minimal assumptions, our main goal 
consisted of characterising thermodynamic transformations across dif
ferent regimes and identifying optimal protocols. To ask and answer 
these questions, we lay out a powerful theoretical toolkit that provides a 
robust approach to studying the thermodynamics of small systems: the 
resource-theoretic approach. The main mathematical tools that consis
tently appear within this framework were presented in Chapter 3, while 
the framework itself was detailed in Chapter 4.

Chapter 5  analysed the structure of thermal cones. Specifically, for a
d-dimensional classical state of a system interacting with a heat bath, we
found explicit construction of the past thermal cone and the incomparable 
region. Moreover, we provided a detailed analysis of their behaviour 
based on thermodynamic monotones given by the volumes of thermal 
cones. Then, we discussed the applicability of these results to other 
majorisation-based resource theories (such as that of entanglement and 
coherence), since the partial ordering describing allowed state transfor
mations is then the opposite of the thermodynamic order in the infinite 
temperature limit. Finally, we also generalised the construction of thermal 
cones to account for probabilistic transformations and for a coherent 
qubit.

In Chapter 6, we developed a resource-theoretic framework that allowed
one to bridge the gap between two approaches to quantum thermodynam
ics based on Markovian thermal processes. Our approach was built on the 
notion of memory-assisted Markovian thermal processes, where memo
ryless thermodynamic processes were promoted to non-Markovianity 
by explicitly modelling ancillary memory systems initialised in thermal 
equilibrium states. Within this setting, we proposed a family of protocols 
composed of sequences of elementary two-level thermalisations that 
approximated all transitions between energy-incoherent states accessible 
via thermal operations. We proved that, as the size of the memory in
creased, these approximations became arbitrarily good for all transitions 
in the infinite temperature limit, and for a subset of transitions in the



finite temperature regime. Furthermore, we presented solid numerical 
evidence for the convergence of our protocol to any transition at finite 
temperatures. We also explained how our framework could be used to 
quantify the role played by memory effects in thermodynamic protocols 
such as work extraction. Finally, our results showed that elementary 
control over two energy levels at a given time was sufficient to generate 
all energy-incoherent transitions accessible via thermal operations if one 
allowed for ancillary thermal systems.

In Chapter 7, we derived a fluctuation-dissipation theorem version within 
a resource-theoretic framework, where one investigates optimal quantum 
state transitions under thermodynamic constraints. More precisely, we 
first characterised optimal thermodynamic distillation processes, and 
then proved a relation between the amount of free energy dissipated in 
such processes and the free energy fluctuations of the initial state of the 
system. Our results applied to initial states given by either asymptotically 
many identical pure systems or an arbitrary number of independent 
energy-incoherent systems, and allowed not only for a state transforma
tion, but also for the change of Hamiltonian. The fluctuation-dissipation 
relations we derived enabled us to find the optimal performance of 
thermodynamic protocols such as work extraction, information erasure,
and thermodynamically-free communication, up to second-order asymp
totics in the number N  of processed systems. We thus provided a first
rigorous analysis of these thermodynamic protocols for quantum states 
with coherence between different energy eigenstates in the intermediate
regime of large but finite N .

Finally, in the last chapter of this thesis, we went beyond thermodynamics
and presented a catalytic process in a paradigmatic quantum optics
setup, namely the Jaynes-Cummings model, where an atom interacted
with an optical cavity. The atom played the role of the catalyst, and 
allowed for the deterministic generation of non-classical light in the
cavity. Considering a cavity prepared in a "classical” coherent state, and
choosing appropriately the atomic state and the interaction time, we
obtained an evolution with the following properties. First, the state of the 
cavity had been modified, and now featured non-classicality, as witnessed 
by sub-Poissonian statistics or Wigner negativity. Second, the process was 
catalytic, in the sense that the atom was deterministically returned to its 
initial state exactly, and could then in principle be re-used multiple times.
We investigated the mechanism of this catalytic process, in particular 
highlighting the key role of correlations and quantum coherence.
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