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Abstract

In 1941, Turan determined the maximum number of edges which a graph on a fixed number of 
vertices can contain without forcing a complete graph of a given order. Since then, many so-called 
Turan-type questions have been raised about maximizing the value of some graph parameter, like 
the number of subgraphs isomorphic to a particular graph, in a graph with some forbidden sub
structure. We contribute to the study by proving several results on different Turan-type problems.

First, we contribute to the problem of maximizing the number of k-cycles in a graph without 
l-cycles by finding the exact asymptotics of this number when k > 7 is odd and l = k — 2. This 
is an extension of a long-standing problem of Erdos about the maximum number of pentagons in 
a graph without triangles, which was resolved only recently.

Next, we study the problem of maximizing the number of arcs in an oriented graph which 
does not contain a specific oriented graph as a subgraph. The exact asymptotics is linked to 
a certain graph parameter called compressibility. We prove several results regarding the growth 
rate of compressibility with respect to the length of a longest path. In particular, we prove that 
if the maximum out-degree of an acyclic oriented graph is at most two, then its compressibility is 
bounded from above by a polynomial of degree four.

We also investigate the problem of maximizing the number of directed k-cycles in an oriented 
graph without directed l-cycles. We determine the order of magnitude for all choices of k and l, 
and the exact asymptotics for a number of cases.

Finally, we consider the problem of maximizing the number of induced subgraphs isomorphic to 
some fixed graph, both in the undirected and the oriented settings. This leads to a graph parameter 
called inducibility. We contribute to the study by improving the lower bound on the inducibility 
of a 4-vertex path, and by determining or approximating the inducibility for all oriented graphs 
on four vertices.
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Chapter 1

Introduction

Extremal Graph Theory is a field of combinatorics that studies how various graph properties 
behave with respect to different global graph parameters. A typical problem structure is the 
following — for a given family F of graphs and a graph parameter f, what is the maximum value 
a of f (G) over all graphs G e F? It is also of interest to determine all G e F such that f (G) = a 
— they are usually referred to as extremal graphs.

One of the most basic and fundamental graph parameters is the number of edges in a graph. 
It was already considered by Euler [30] in 1758, who proved that a planar graph on n vertices 
can have at most 3n — 6 edges. Much later, in 1907, Mrntel [64] observed that any graph on n 
vertices without triangles can contain at most n2 /4 edges, and Erdos [24] in 1938 proved an upper 
bound on the number of edges in a graph without 4-cycles. However, the systematic study of this 
parameter started with the work of Turan [75] in 1941 who determined the maximum number of 
edges in a graph without a complete graph of a fixed order.

For a graph H and a nat ural number n, the Turan number of H, denoted by ex(n, H), is the 
maximum number of edges in a graph on n vertices which is H-free, i.e. which does not have 
a subgraph isomorphic to H. In this context, Mantel determined the Turan number of a triangle, 
and Turan determined the Turan number of a general complete graph. But it was Erdos and Stone 
who proved in 1946 an asymptotic formula for any graph H:

Theorem 1.1 (Erdos, Stone [29]). For any graph H with x(H) > 2,

ex(n, H) = (* - xösh) (’n) + o(n2).

For bipartite graphs H, from Theorem 1.1 we can only conclude that ex(n, H) = o(n2). Finding 
a more precise asymptotics is a challenging task and it was resolved only for a narrow class of 
bipartite graphs. There are many partial results regarding the Turan number of complete bipartite 
graphs, even cycles or d-degenerate graphs; for more details on the topic see for instance the 
survey [37]. We shall instead focus on another directions of research and try to investigate related 
problems.

There are many possible variations of the Turan problem, which are usually referred to as the 
Turan-type problems. Let us list those few of them which will be considered in this thesis. Basic 
notation and tools are introduced in Chapter 2.

• Instead of counting edges, one can fix a graph T and count the number of subgraphs iso
morphic to T; this leads to the concept of a generalized Turan number ex(n, T, H), which 
we shall discuss in more detail in Chapter 3. Of our particular interest is when both T 
and H are cycles. This problem was considered already by Erdos [25], who conjectured 
that ex(n, C5, C3) < (n/5)5 and the equality holds only for a balanced blow-up of C5; this 
conjecture was proved with a sophisticated use of the flag algebra method and stability ar
guments [41, 49, 60]. Up to now, the exact asymptotics of ex(n, Ck,Cl) was determined 
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2 CHAPTER 1. INTRODUCTION

only for specific pairs of k and l. We contribute to the study by determining asymptotically 
ex(n, C2k+1, C2k-1) for k > 3 (Theorem 3.1). In contrast to the proofs of Erdos’ conjecture, 
the proof of Theorem 3.1 is not computer assisted. Instead, it relies on the method developed 
by Kral’, Norin, and Volec [59] and on Regularity Lemma.

• One can consider other classes of discrete structures. In Chapter 4, we shall discuss Turan
type problems for directed and oriented graphs. For the latter, there exists a parameter t(H) 
called compressibility, which plays the same role as the chromatic number in Theorem 1.1. 
Therefore, to determine the exact asymptotics of exo(n, H) for an acyclic oriented graph H, 
it is enough to compute t(H). (If H is not acyclic, then the problem is trivial.) We prove 
several results regarding the growth rate of compressibility with respect to the order p(H) 
of a longest path in H. In particular, we show that t(H) = O(p(H)4) if the maximum out- 
degree of H is two (Theorem 4.14). There is a general lower bound p(H) < t(H), and we 
provide a large family of acyclic oriented graphs for which this bound is tight (Theorem 4.27).

• One can mix both concepts. In Chapter 5, we shall consider generalized Turan numbers 
exo(n, T, H) for oriented graphs, with the focus on the case when both T = Ck and H = Cl 
are directed cycles. We determine the order of magnitude of exo(n, Ck ,Cl) for all choices 
of k and I (Theorem 5.2). We also find the exact asymptotics for k e {3,4, 5} and I > k 
not divisible by k (Theorems 5.5, 5.6, and 5.7), for odd k > 6 and sufficiently large I not 
divisible by k (Theorem 5.4), and for (k,I) = (3, 6) (Theorem 5.3). The proofs combine 
many different tools and methods, including Regularity Lemma, the flag algebra method, 
and Frobenius coin problem.

• What if we try to maximize not the number of subgraphs isomorphic to some graph, but the 
number of induced subgraphs? This results in a graph parameter called inducibility, which 
measures approximately how many induced subgraphs isomorphic to a fixed graph H can 
appear in a graph on n vertices. Our understanding of this parameter is currently rather 
low, as it was determined only for a very narrow class of graphs. The smallest graph whose 
inducibility is still unknown is P4, a path on 4 vertices. Over the years, there were many 
attempts to bound the inducibility of P4 [32, 51, 77, 31]. We found a construction, which is 
presented in Chapter 6, yielding an improvement to the best previously known lower bound 
for the inducibility of P4 obtained in [31].

• As in the case of the original Turan problem, inducibility can also be considered for other 
classes of combinatorial structures. In Chapter 7, we shall discuss the results on inducibility 
of oriented graphs. We contribute to the problem by determining inducibility exactly or 
finding very good estimates for all oriented graphs on four vertices. Most of the proofs of the 
upper bounds rely on the flag algebra method and are therefore computer assisted. We also 
show that for almost every oriented graph on 4 vertices, there exists a construction yielding 
a strictly better lower bound on inducibility than the general iterated blow-up construction, 
which is almost always optimal in the case of larger graphs, as shown by Fox, Huang, and 
Lee [35].



Chapter 2

Notation and basic tools

In this chapter, we shall introduce the basic notation and some of the tools used in the proofs. 
Section 2.5.6 is Appendix A from [14] with no substantial changes. The remaining content of this 
chapter was written by me for the purpose of this thesis.

If A is a set and k is a nonnegative integer, we write |A| for the cardinality of A and (A) for 
the family of all k-subsets of A For an integer k > 0, let [k] = {i e Z : 1 < i < k}. For functions, 
we write

• f (n) = O(g(n)) if |f(n)| < Cg(n) for some constant C > 0,

• f (n) = o(g(n)) if lim f(n)/g(n) = 0,

• f (n) = 0(g(n)) if cg(n) < f (n) < Cg(n) for some constants c, C > 0.

2.1 Undirected graphs
A graph is a pair G = (V(G),E(G)), where V(G) is a set of vertices and E(G) C (V(2G)) is 
a set of edges; if v, w e V(G) are vertices, we shall usually write vw for an edge {v,w} and 
say that vw is incident to v and w. A graph is of order n if its vertex set is of cardinality 
n. We say that H is a subgraph of G if V(H) C V(G) and E(H) C E(G). A subgraph H 
of G is induced if for every vw e E(G) with v,w e V(H) we have vw e E(H). For a subset 
X C V(G), let G[X] denote the subgraph of G induced by the vertex set X, i.e. V(G[X]) = X 
and E(G[X]) = {vw e E(G) : v, w e X}. For v e V(G), we shall also write G — v for a subgraph 
of G induced by V(G) \ {v}.

For v e V(G), the neighborhood of v in G is defined as N(v) = {w e V(G) : vw e E(G)} and 
the degree of v in G is d(v) = |N(v)|. The maximum degree A(G) of a graph G is the maximum 
of d(v) taken over all vertices of G. and the minimum degree ¿(G) is the minimum of d(v) taken 
over all vertices of G. A vertex v e V(G) is isolated if its degree in G is zero.

For any graphs G and H, a map f : V(G) V(H) is a homomorphism if it preserves edges, 
i.e. for any vw e E(G) we have f (v)f(w) e E(H); in this case, we usually write G H to 
indicate that there exists some homomorphism between them. We say that a homomorphism 
f : G H is surjective {injective) if the map f : V(G) V(H) is surjective (injective). A graph 
H is a homomorphic image of G if there exists a surjective homomorphism f : G H such that 
for each edge vw e E(H) there exists an edge v'w' e E(G) such that vw = f (v')f (w'). Two 
graphs G and H are isomorphic, which we write shortly as G « H, if there exists a bijective map 
f : V(G) V(H) such that both f and its inverse are homomorphisms. If H' is a subgraph of G 
and H is isomorphic to H', we shall refer to H' as to a copy of H in G. If G does not have a copy 
of H, we say that G is H-/ree. For a family F of graphs, we say that G is F-free if it is H-free for 
every H e F.

We define the following special graphs:
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• a complete graph Kn on n > 1 vertices with edge set E(Kn) = (V(Kn));

• a path Pn, also called an n-path, on n > 1 vertices vi,vn with edge set E(Pn) = {vivi+1 : 
1 < i < n}. Vertices v1 and vn are endpoints of Pn, while vertices v2,..., vn-1 are internal 
vertices of Pn. We say that a path P joins vertices v and w (or goes from v to w) if these 
vertices are the endpoints of P. We also define the length of a path as the number of its 
edges;

• a cycle Cn, also called an n-c^cZe, on n > 3 vertices v1,..., vn with edges v1vn and vivi+1 
for 1 < i < n; We define the length of a cycle as the number of its edges;

• a complete bipartite graph Kn,m on n+m vertices, where m, n > 1, with vertex set V(Kn,m) = 
A U B, where |A| = n and |B| = m, and edge set E(Kn,m) = {vw : v e A and w e B}. For 
n > 2, we shall also write K1,n-^s Sn and call it a star on n vertices;

• an empty graph In on n > 1 vertices with empty edge set.

Let v and w be two vertices of a graph G. We define the distance dG(v,w) from v to w 
in G the minimum length of a path in G from v to w; if no such path exists, then we put 
dG(v, w) = to. A graph G is connected if dG(v, w) < to for every two vertices v,w e V(G). 
A connected component of G is a connected subgraph of G which is not contained in any larger 
connected subgraph of H.

2.2 Directed and oriented graphs
A directed graph (also called a digraph) is a pair G = (V(G), E(G)), where V(G) is a set of vertices 
and E(G) C V(G) x V(G) is a set of arcs; if v, w e V(G) arc' vertices, we shall usually write vw for 
an arc (v, w), and say that this arc is (directed) from v to w. A directed graph is of order n if its 
vertex set is of cardinality n. In this thesis, we consider only directed graphs without loops, i.e. arcs 
with both endpoints at the same vertex. An oriented graph is a directed graph such that for every 
pair of vertices there is at most one arc between them. For a vertex v e V(G), the out-neighborhood 
of v in G is the set N +(v) = {w e V(G) : vw e E(G)} ^d the in-neighborhood of v in G is the set 
N-(v) = {w e V(G) : wv e E(G)}. We define Aso the out-degree of v in G as d+(v) = |N+ (v)|, 
in-degree of v in G as d-(v) = |N-(v)|, degree of v as d(v) = d+(v)+ d-(v), and non-degree of v in 
G as d'(v) = |V(G) \ (N+(v) U N-(v) U {v})|. The maximum degree A(G), maximum out-degree 
A+(G), ^d maximum in-degree A-(G) of a directed graph G ^e the maximum of d(v), d+(v), 
or d- (v), respectively, taken over all vertices of G. Other degree-related notions can be defined 
analogously.

If H is an oriented graph, then its underlying graph is an undirected graph G with V(G) = 
V(H) and t he' edge set E(G) = {{v, w} : (v,w) e E(H)} We refer to H as an orientation of G. 
Any orientation of Kn is c^ied a tournament on n vertices.

The notions of subgraphs, induced subgraphs, homomorphisms, and isomorphisms are essen
tially the same as for undirected graphs.

We define the following special graphs:

• a complete digraph K on n > 1 vertices with arcs vw and wv for every pair v,w e V(Kj 
of distinct vertices;

• a transitive tournament Pn on n > 1 vertices v1,..., vn and arc set {vivj : 1 < i < j < n};

• a directed path Tn, also called a directed n-path, on n > 1 vertices v1,. .., vn with arc set 
E(Pn) = {vivi+1 : 1 < i < n}. Vertices v1 and vn we endpoints of Pn, while vertices 
v2,..., vn-1 arc' internal vertices of Pn. We say that a directed path P joins vertices v and 
w if these vertices are the endpoints of P, ^d it goes from v to w if the arcs of P are directed 
towards w. We also define the length of a directed path as the number of its arcs;
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• a directed cycle Cn also called a directed n-cycle, on n > 3 vertices v1,..., vn with arcs vnv1 
and v^^ for 1 < i < n. We define the length of a directed cycle as the number of its arcs;

• an orientation kI.,,, of' Kn,m with vertex set V(kI,™) = A U B, where |A| = n and |B| = m, 

and arc set E(Kn,m) = {vw : v G A and w G B}. For n > 2, we shall write K1,n-1 also as 
Sn and c^l A a directed star on n vertices;

• an empty graph In on n > 1 vertices with empty arc set.

Let v and w be two vertices of a directed graph G. We define the distance dG(v, w) from v to 
w in G as the minimum length of a directed path in G from v to w; if no such path exists, then 
we put dG(v,w) = to. A directed graph G is strongly connected if dG(v,w) < to for every two 
vertices v, w G V(G). A strongly connected component of G is a strongly connected subgraph of 
G which is not contained in any larger strongly connected subgraph of H. A directed graph G is 
connected if its underlying graph is connected, and a subgraph of G is a connected component if 
the respective subgraph of the underlying graph of G is its connected component. A Hamiltonian 
path in G is a subgraph of G which is isomorphic to —V (G)|- We say that a sub graph M of G is 
a matching if every two arcs of M are vertex disjoint.

2.3 Blow-ups and other graph operations
Let G and H be graphs (both undirected, directed, or oriented). We define the following graph 
operations:

• the union G U H of graphs G and H as the graph with V(G U H) = V(G) U V(H) and 
E(G U H) = E(G) U E(H);

• a disjoint union G LI H of graphs G and H as a graph isomorphic to GG U H where G is 
isomorphic to G', H is isomorphic to H', and V(G') A V(H') = 0;

• if G and H are oriented graphs, then G H denotes a graph being a disjoint union of G 
and H with all possible mxs from vertices of G t o vertices of H;

• the tensor product G © H of ^aphs G and H the ^aph with V(G © H) = V(G) x V(H); 

a vertex (g1, h1) is adjacent to (g2, h2) if and only if g1g2 G E(G) and h1h2 G E(H);

• the composition G © H of graphs G and H the graph with V(G © H) = V(G) x V(H); 

a vertex (g1, h1) is adjacent to (g2, h2) if either g1 = g2 and h1h2 G E(H) or g1g2 G E(G).

Let G1 and G2 be vertex disjoint graphs and v G V(G1). We say that a graph G is obtained 
by substituting G2 for v in G1 if the following holds:

• V(G)= V(Gi - v) U V(G2),

• G[V(G1 - v)] = G1 - v,

• G[V (G2)] = G2,

• for every u G V(G1 — v) and w G V(G2), we have uw G E(G) if and only if uv G E(G1); if 
G1 and G2 art' directed, then also wu G E(G) if and only if vu G E(G1).

We say that a graph G' is a blow-up of a graph G if there exists a sequence of vertex disjoint 
graphs (Hv)veV(G) such that G' was obtained by sequentially substituting Hv ior v in G for every 
v G V(G). Operation G©H is an example of a blow-up of a graph G with Hv = H for all v G V(G), 
see Figure 2.1. Usually, graphs Hv ^e taken to be isomorphic to Ik(v) for some integers k(v) > 0, 
and we shall assume the same for the rest of the thesis if not specified otherwise. Moreover, if 
|k(v) — k(w)| < 1 for every choice of vertices v, w G V(G), then we shall refer to G' as a balanced 
blow-up of G.
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Figure 2.1: Compositions P3 © C5 and C5 © P3. Composition of graphs as a binary operation on 
graphs is in general non-commutativc.

For arbitrary graphs G1, G2, G3 we have an isomorphism G1 0 (Gg2 © G3) K (G1 © G2) © G3. 
Therefore, it makes sense to write G1 © G2 © G3 and define inductively G®n 
n > 0 and 11 for n = 0. We shall call graphs of the form G&n iterated blow-ups of G.

For an integer k > 1, a graph G' is a k-tk power of a graph G if V(G') = V(G) and E(G') = 
{vw : 1 < dG(v, w) < k} .If k = 2. then we also say that G' is a square of G.

2.4 Regularity Lemma
In this section, we shall discuss one of the most powerful tools in Extremal Graph Theory, known 
as Szcmcrcdi’s Regularity Lemma, in both undirected and directed settings.

2.4.1 Undirected case
Let G be a graph and A, B C V(G) be disjoint vertex subsets. Let e(A, B) denote the number of 
edges between A and B, and define the density of a pair (A, B) as

P(A,B) =
e(A,B)
|A|-|B|.

A pair (A, B) is e-repu/ar if for any X C A and Y C B with |X| > £ |A| and |Y| > e |B|, we have

|p(X,Y) - p(A,B)| <£.

Szcmcrcdi’s Regularity Lemma asserts that every large graph can be partitioned into a small 
number of parts such that the edges between most of those parts behave almost like in a random 
bipartite graph.

Theorem 2.1 (Szemeredi’s Regularity Lemma [74]). For any e > 0 and m > 0, there exists 
M > m such that every graph on n > m vertices has a partition of its vertex set into k +1 parts 
V0,..., Vk for some k with m < k < M such that:

• |Vo| < en,

• |Vi| = ... = |Vk|,

• all but at most ek2 pairs (V), Vj) with 1 < i < j < k are e-regular.
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A partition Vo,..., Vk is called e-regular if it satisfies all the properties in Theorem 2.1.
For an --regular partition Vo,..., Vk of some graph G and for d e [0,1], we define the reduced 

graph R(-, d) as the graph with vertex set {1,2,..., k} and edge set {ij : a pair (V, Vj) is --regular 
with density at least d}.

One of the most useful properties of --regular partitions is known as Embedding Lemma, which 
roughly says that we can imply the existence of a copy of a graph ff in G from the existence of 
a copy of ff in a blow-up of R(-, d). Since the latter implies the existence of a homomorphism 
ff R(-, d), we state Embedding Lemma in the following simplified form.

Theorem 2.2 (Embedding Lemma [57]). For any d e (0,1] and A > 1, there exists -0 such 
that for any - < -0 and any s > 1 the following holds. Let ff be a graph with A(ff) < A and 
|V(ff)| < s, and let R = R(-, d) be the reduced graph of an --regular partition of some graph 
G with parts of size at least C = C(s,d, A). If there exists a homomorphism ff R, then G 
contains a copy of ff.

The following corollary, which we formulate as a lemma, and its directed analogue will be used 
in many proofs regarding Turan numbers.

Lemma 2.3. For any graph ff and - > 0. there exists n0 such that from any H-free graph G on 
n > n0 vertices we can remove at most -n2 edges and obtain a graph G' for which there exists no 
homomorphism ff G'.

Proof. Since the proof is mostly about choosing the right value of constants, we shall emphasize 
the crucial dependencies. Let A = A(ff), s = |V(ff)|, and d = -/2. Let -0 = -0(d, A) > 0 and 
C = C(s, d, A) be as in Theorem 2.2. Take m > 4^ and - > 0 such that - < min(-0, -/4), and 
let M = M (m,-) be as in Theorem 2.1. Sup pose that G is an ff-free graph on n vertices for 
some n > n0 := CM/(1 — -). Apply Theorem 2.4 to obtain an --regular partition V0,..., Vk of G 
for some integer k satisfying m < k < M, and let R = R(-, d) denote the reduced graph of this 
partition. Since each V) for i > 1 has at least C vertices, we conclude from Theorem 2.2 that there 
exists no homomorphism ff R, as otherwise G would contain a copy of ff. Remove from G all 
edges:

• between parts of pairs which are not --regular (at most -n2 removed edges),

• between parts of pairs which are --regular with density at most d (at most d n2 removed 
edges),

• incident to Vo (at mo st -n2 removed edges),

• inside each part V) for i > 1 (at most m removed edges),

and let G' denote the obtained graph. Then, G' is ff-free, as any copy of ff in G' would induce 
a homomorphism ff R, and it was obtained from G by removing at most -n2 edges. □

2.4.2 Directed case
In order to make concepts from the unoriented case work in the directed setting, one needs to 
slightly modify the definition of an --regular pair.

Let G be a directed graph and let A, B C V(G) be disjoint vertex subsets. Denote by #„(A, B) 
the number of arcs from A to B and by e( A, B) the number of pairs (v,w) e A x B such that 
vw, wv e E(G). Define the directed densities of a pair (A, B) as

#„(A,B) = e(A,B)
|A|-|b |, P(A,B) =

e(A, B)
|A|-|B| .

We say that a pair (A, B) is --re^u/ar if for any X C A and Y C B with |X| > - |A| and |Y| > - |B| 
we have

|#„(A,B) - #„(X,Y)| <-, |#„(B, A) - #„(Y,X)| <-, |p(A, B) - p(X,Y)| <-.
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Theorem 2.4 (Regularity Lemma for directed graphs [2]). For any £ > 0 and integer m > 0, 
there exists M > m such that every graph on n > m vertices has a partition of its vertex set into 
k + 1 parts V0,..., Vk for some m < k < M such that:

• |Vo| < £n,

• |V1| = ... = |Vk|,

• all but at most ek2 pairs (Vi, Vj) with 1 < i < j < k are e-regular.

A partition V0,..., Vk is called £-regular if it satisfies all the properties in Theorem 2.4.
For an e-regular partition V0,..., Vk of some directed graph G and for d e [0,1], we define 

the reduced digraph ~R(e, d) as the directed graph with vertex set {1,2,... ,k} and arc set {ij : 
a pair (Vi, Vj-) is £-regular and #„(Vi, Vj-) > d}.

One may prove the following analogue of Theorem 2.2 using the same approach as in [57].

Theorem 2.5 (Embedding Lemma for directed graphs). For any d e (0,1] and A > 1, there 
exists £0 such that for any £ < £0 the following holds. Let H be a digraph with A(H) < A and 
R? = R?(e, d) be the reduced digraph of an £-regular partition of some digraph G with parts of size 
at least C = C(d, A). If there exists a homomorphism H ? R, then G contains a copy of H.

It is also immediate that we have an analogue of Lemma 2.3.

Lemma 2.6. For any digraph H and £0 > 0. there exists n0 such that from any H-free digraph G 
on n > n0 vertices we can remove at most ^n2 arcs and obtain a digraph G' for which there exists 
no homomorphism H ? G'.

2.5 Flag algebra method
The flag algebra method was developed by Razborov [69] and quickly became recognized as a very 
powerful tool for tackling numerous open problems in Extremal Graph Theory and other branches 
of Extremal Combinatorics. Some of the results presented in this thesis were obtained using the 
Flagmatic software written by Vaughan [77], which implements the flag algebra method. The goal 
of this section is to outline the most important mathematical concepts behind this method. In 
the last subsection, we also briefly explain the main structure of our codes that use Flagmatic.

For simplicity, we shall restrict our attention to undirected or directed graphs. Razborov 
introduced flag algebras for general discrete structures with a set of very basic properties; for the 
details, we refer to the original paper [69].

2.5.1 Flags and flag densities
For an integer k > 0, a type a of order k is a graph with V(a) = [k], where the only type of order 
zero is denoted by 0. A a-^ap of order I is a pair (G, 0), where G is a graph on I vertices and 0 
is an injective homomorphism a ? G such that 0([k]) induces a subgraph isomorphic to a. Two 
a-flags (G1,01) and (G2,02) ^e isomorphic if there exists an isomorphism f of G1 and G2 that 
preserves a, i.e. f (01 (i)) = 02(i) for every i e [k]. If F = (G, 0) is a a-flag. X C V(G) \ 0([k]), and 
G1 is a subgraph of G induced by X U 0([k]), then we say that (G1, 0) is a a-hag induced by X.

For a fixed type a, let be the set of all a-flags, and F/ be the set of all a-flags of order I. 
For F1,F2 e FCT, where F1 = (G1,01) and F2 = (G2,02), we define a density d(F1,F2) of F1 in 
F2 as t he' probability that a random subset of V(G2) \ 02([k]) of size |V(G1)| — k induces a a-flag 
isomorphic to Fp If a = 0, then d(F1, F2) is just a probability that a random |V(G1 )|-element 
subset of V(G2) induces a copy of G1 in G2.

We shall also define a quantity d(F1,F2; F) for a-flags F1 = (G1,01^ F2 = (G2,02), and 
F = (G, 0) as t he' probability that for a randomly chosen pair (X1,X2) of disjoint subsets of 
V(G) \ 0([k]) with |X1| = |V(G1)| — k and |X2| = |V(G2)| — k, X1 induces a a-flag isomorphic to 
F1 and X2 induces a a-flag isomorphic to F2.
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2.5.2 Flag algebras
Fix a type a of order k. Let RFa denote the set of form^ finite linear combinations of a-flags 
with real coefficients. It is equipped with natural operations of addition and multiplication by 
a scalar, hence it can be treated as a vector space over R.

Let KCT be the linear subspace of RFCT generated by all vectors of the form

F — £ d(F,F')F',
F F

for all I > k and all F e Fa of order at most I.
For F1 e F£ and F2 e Ff2, let I = l1 + l2 — k and define a product

Fi • F2 = £ d(Fi,F2i F)F
F F

This operation can be linearly extended to the whole RF® RFCT.

Proposition 2.7 (Razborov [69]). Let A = RFCT/K a,nd, F^F2 e RFF The multiplication

[Fi] • [F2] := [Fi • F2]

is well defined with the multiplicative identity 1a := [(a, id)] and turns Aa into an algebra over R.

We shall call ACT a flay algebra. For convenience, we shall usually write F instead of [F] if 
it does not lead to confusion. Also, when c e R, we shall write c1a simply as c. Following this 
convention, observe that in a flag algebra for any I > k we have 52 FF =1.

2.5.3 Convergent sequences and limit homomorphisms
Consider an infinite sequence (F„)„>^f a-flags, where Fn e F£ . We shall say that this sequence 
is increasing if kn < k„+1 for every n > 1. An increasing sequenee of a-flags is convergent if the 
sequence of densities (d(F, Fn))n>1 is convergent for every F e Fa.

For a convergent sequence (Fn)n>15 define a map $ : Fa R as $(F) = lim,, . v d(F, Fn). 
This map can be linearly extended to RFCT. One may show that the kernel of this map contains KCT, 
therefore the linear map $ : ACT R given by $([F]) := $(F) for all F e RFCT is well defined.

Proposition 2.8 (Razborov [69]). The linear map $ : ACT R preserves multiplication and 
identity, therefore is an algebra homomorphism.

In particular, for any F e FCT, we have $(F) e [0,1] and $(1a) = 1. We shall call $ a limit 
homomorphism.

Let Hom+(ACT, R) be the set of all algebra homomorphisms $ : ACT R with the prop
erty that $(F) e [0,1] for every F e FCT. By definition, every limit homomorphism belongs 
to Hom+(ACT, R). The following asserts that the converse is also true, i.e. every element of 
Hom+(ACT, R) is a limit homomorphism.

Theorem 2.9 (Lovasz, Szegedy [61]). For every $ e Hom+(ACT, R) there exists a convergent 
sequence (F„)„>^/ a-flags such that $(F) = limn.TO d(F, Fn) for every F e Fo

Therefore, Hom+ (ACT, R) is exactly the set of all limit homomorphisms. Using Theorem 2.9, 
many problems from Extremal Graph Theory can be translated to the language of flag algebras 
and homomorphisms. For instance, the asymptotic version of Mantel’s Theorem can be expressed 
as follows:

For any $ e Hom+(A0,R), f/$(C3) = 0, then $(K2) < |.
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To see that it indeed implies the asymptotic version of Mantel’s Theorem, consider any 
increasing sequence (Fn)n of triangle-free graphs (or, equivalently, elements of F") such that 
|E(Fn)| > (1/4 + e) |V(Fn)|2 for every n. One may easily show using Cantor’s diagonal argu
ment that every increasing sequence of flags contains a convergent subsequence, therefore without 
loss of generality we may assume that (Fn)n is already convergent. But then, it induces a limit 
homomorphism T that satisfies T(C3) = 0 and T(K2) > 1/4 + e, a contradiction.

Sometimes, it is possible to derive the „finite” versions of theorems from their asymptotic 
counterparts, for instance by taking a sequence of blow-ups of the smallest counterexample. In 
particular, one may prove this way the exact version of Mantel’s Theorem without the o(n2) error 
term.

Our next goal is to introduce tools that can be used to prove flag-algebraic statements as above.

2.5.4 Averaging operator and Cauchy-Schwarz inequality
For a fixed type a and F = (G, 0) e FCT, define qCT(F) e [0,1] as the probability that a random 
injective function F : V(a) V(G) yields a a-flag (G, 00) isomorphic to F. Define an averaging 
operator [•] : Fa F" as [FJ = qa(F) • G. The linear extension of this operator to RFCT has the 
property that [K J C K", hence it induces a well-defined line ar operator [•] : Aa A".

For f, g e ACT, write f > g if T(f — g) > 0 for every T e Hom+(ACT, R).

Theorem 2.10 (Cauchy-Schwarz inequality [69]). For any f, g e AF

If2] • [g2] > If • ■

In particular, [f2 J > 0.

Since the operator [•] is not an algebra homomorphism, Theorem 2.10 is a way of obtaining 
non-trivial flag algebra inequalities.

2.5.5 The semideflnite method
For the following, it is convenient for any type a and F e Fa to linearly extend d(-,F) to the 
whole RFF

Suppose that for some f e A" we want to find the minimum value of c e R such that f < c. 
If we write f as a linear combination of flags on I vertices:

f = aF • F,
f eF®

then we have

f < max aF • 5 F = max aF. 
' FeF

One can improve this bound in the following way. Fix some type a of order 1 < k < I — 2 and 
enumerate all elements F1,... , Ft of F, where 1 < m < (I + k)/2 and t = |F,|. Consider 
a positive semidefinite matrix Q = (qij-)t,j=1. By Theorem 2.10, for a vector v = (Fi)ti=1 with 
Fi e F^, we have [vQvTJ > 0. On the other hand,

[vQvT] = qij [Fi • Fj] = £ CF • F,
FFj eFm FeF®

where the coefficients cF = cF(a, m, Q) are given by the formula

cF(a,m,Q)= ^2 qij • d([Fi • Fj],F).
Fi,Fj eFm
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Therefore, f <52FeFf (°F + cF) • F and it follows that

f < max (aF + cF).
f eFf

Since some of the coefficients cF may be negative, we may obtain a strictly better bound for 
a suitable choice of Q. In fact, we can consider a sequence (ai, mi, Qi)S=1 of triples for some s > 1, 
for which we get the following upper bound:

s
f < max(«F + cf(ai,mi,Qi)). (2.1)

Once the types and integers arc fixed, the problem of minimizing the right side of (2.1) over all 
positive semidefinite matrices Qi can be formulated as a semidefinite programming problem (SDP) 
and as such can be solved numerically. However, numerical solutions need yet to be rounded to 
rational values in order to give a formal proof. In the process of rounding, the matrices Qi may lose 
the property of being positive semidefinite, or the bound we get may become suboptimal. Still, 
there arc a few methods that can be utilized to obtain the exact bound, which arc described c.g. 
in Section 2.4.2 of [4] or in the appendix of [6]. In particular, one may provide the eigenvectors 
corresponding to the eigenvalue zero that should be preserved in the process of rounding the 
matrices. Some of them can be determined from the extremal constructions, but sometimes it 
is necessary to guess them from their numerical approximation for the matrices found by solving 
SDP.

Sometimes, we want to find the maximum value of some density with some additional as
sumptions about forbidden substructures. For instance, in Mantel’s Theorem, we consider only 
triangle-free graphs. In this case, one just puts cF = 0 = aF for all F e F® that contain a tri
angle. This can be made more rigorous by redefining as the family of those a-flags which are 
triangle-free.

Vaughan wrote the program Flagmatic that reformulates a given flag-algebraic problem into 
an SDP, which can be solved using any publicly available SDP solver, and implements the rounding 
algorithm for the numerical solutions.

2.5.6 Explanation of the codes
We wrote some programs to prove several results in Chapters 5 and 7. All those programs require 
the SagcMath [70] and Flagmatic software. Below, we include a short explanation of the codes. 
As an example, we consider the graphl4.sage file, which corresponds to the problem described 
in Section 7.3.14.

1 from flagmatic.all import *
2 P=OrientedGraphProblem(5, dens ity = "4:12233414", type_orders = [3])
a P.set.extremal.construction(field=QQ, target_bound=3/16)
4 P.add.sharp.graphs

(0,9,10,11 ,12,13 ,156,157, 158 ,159, 167 ,168, 169 ,170,171,180,181,182 ,187)
5 #3:
6 P.add.zero.eigenvectors(0,matrix(QQ ,

[(8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,0,0),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,1,0),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,0,0,1)]))

- #3:1232
s P.add_zero_eigenvectors(2,matrix(QQ,

[(0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0),
(0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0),
(0,0,0,2,2,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0),
(0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)]))

o #3:1223
io P.add.zero.eigenvectors(3,matrix(QQ ,

[(0,0,0,2,2,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0),
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(o ,o ,o ,i, -1 ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o),
(0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0),
(0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0)])) 

#3:1213
P.add_zero_eigenvectors(4,matrix(QQ ,

[(0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0), 
(0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), 
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0), 
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0)])) 

P.solve.sdp ()
P.make.exact(16)
P . write.certif icate("graphl4.cert")

11

12

13

14

15

In line 1, we import- Flagmatic libraries. In line 2, using the function OrientedGraphProblem, 
we define the problem P we want to solve. First two parameters of the function are mandatory. 
The first one defines the maximum order of flags used in the computations, while the second 
one defines the graph density we want to maximize. In the considered example, “4:12233414” 
means an oriented graph on 4 vertices (labeled with numbers from I to 4) and arcs 12, 23, 34, 14, 
i.c. graph We can also specify other conditions for the problem. For instance, we limit the 
computations in the above code only to types of order 3.

At this moment, we have already defined the problem which Flagmatic can solve numerically 
using an SDP solver. However, in order to obtain an exact result, we need to provide more 
information for the rounding procedure. In line 3, we define the target bound (i.c. the value which 
wc believe is the correct upper bound) and over which field wc perform the computations — here, 
QQ stands for the field of rational numbers. In line 4, wc specify which graphs densities arc forced 
to satisfy the bound as equalities, they follow from the expected extremal constructions. Finally, 
in lines 5-12, wc provide additional eigenvectors corresponding to the eigenvalue zero needed to 
properly round the semidefinite matrix.

It remains to perform the computations. In line 13, wc numerically solve the SDP (by default 
it is performed by esdp [13], but in a few eases where double-double precision is needed, wc used 
sdpa-dd [66]). In line 14, wc round the output of the solver in the considered field. Finally, in the 
last line, wc create a. certificate, which contains a. complete description of the problem, used flags, 
graphs, matrices, and the proven bound.

By default, Flagmatic is distributed together with an independent, checker program written by 
Vaughan, inspect_certificate.py. A detailed explanation of the contents of certificates and 
how the checker program works can be found in [33].



Chapter 3

Generalized Turan-type problems for 
cycles

The results in this chapter are based on joint work with Andrzej Grzesik and are published in the 
article A. Grzesik and B. Kielak: On the maximum number of odd cycles in graphs without smaller 
odd cycles, J. Graph Theory 99(2) (2022), 240-246. We came up independently with the idea of 
proving Claim 3.2 and the related definitions of sets Ai. Section 3.1 is an introduction written 
for the purpose of this thesis. Section 3.2 is Section 2 from [42] with no substantial changes, and 
Section 3.3 is Section 3 from [42] with the corrected statement of Conjecture 2 (Conjecture 3.5 in 
this thesis).

3.1 Introduction
For fixed connected graphs T and H, let ex(n, T, H) denote the maximum number of copies of T 
in an H-free graph on n vertices. For T = K2, it is just the Turan number ex(n, H), which was 
already discussed in Chapter 1. Even though the systematic studies of this problem for T = K2 
were initiated by Alon and Shikhelman [3], some specific cases were considered earlier.

The first known result is due to Erdos [26] and Zykov [79], who independently determined 
ex(n, Ks, Kt) ior s < t.

In 1984, Erdos [25] asked for the maximum number of copies of C5 in a triangle-free n-vertex 
graph. He conjectured that the maximum is obtained by a balanced blow-up of C5. Gyori [44] 
proved an upper bound within a factor 1.03 of the optimal. Using flag algebras method, Grzesik 
[41] and, independently, Hatami et al. [49] proved that any triangle-free graph on n vertices has 
at most (n/5)5 copies of C5, which is a tight bound for n divisible by 5. Michael [65] presented a 
sporadic counterexample to the characterization of the extremal cases by presenting a graph on 8 
vertices showing that not only a balanced blow-up of a C5 can achieve the maximum. Recently, 
Lidicky and Pfender [60], also using flag algebras, completely determined the extremal graphs for 
every n by showing that the graph pointed out by Michael is the only extremal graph which is not 
a balanced blow-up of a pentagon.

Since we will be interested mostly in the case when both T and H are cycles, let us mention 
other recent results regarding them. Bollobas and Gyori [10] proved that ex(n, C3, C5) = 0(n3/2), 
Gyori and Li [46] extended this result to obtain bounds for ex(n, C3, C2k+1), which were later 
improved by Alon and Shikhelman [3] and by Fiiredi and Ozkahya [36]. Gishboliner and Shapira 
[39] proved a correct order of magnitude of ex(n, Ck, G) for k > 4 and I > 3, and independently 
Gerbner et al. [38] for all even cycles, together with the tight asymptotic value of ex(n, C4,C2k) 
and ex(n, C6, C8). Recently, Górski and Grzesik [40] determined ex(n, C5, C7) exactly, and Gyori 
et al. [45] found an exact formula for ex(n, C4, C6) if n > 3(31 )■

Here, we prove the following result from which we can conclude the exact asymptotics of 
ex(n, Ck, Ck-2) for all odd k > 7, unknown before.

13
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Theorem 3.1. For each odd integer k > 7 any graph on n vertices without odd cycles of length 
smaller than k contains at most (n/k)k cycles of length k. Moreover, for k | n, a blow-up Ck©In/k 
is the only graphs attaining this maximum. As a corollary, ex(n, Ck,Ck-2) = (n/k)k + o(nk).

The corollary part of Theorem 3.1 follows from Lemma 2.3. Indeed, since Ck-2 can be mapped 
homomorphically into Cl for any odd I less than k, if a large n-vertex graph G is Ck-2-free, then 
by Lemma 2.3 we can remove o(n2) edges from G to eliminate all copies of shorter cycles, thus 
the number of copies of Ck in G would change by at most o(nk).

The proof of Theorem 3.1 is based on the method developed by Kral’, Norin, and Volec [59].

3.2 Main result
Fix an odd integer k > 7, and 1 et G be any n-vertex graph without Cl for all odd I between 3 and 
k — 2. Since there are no odd cycles smaller than k, each k-cycle in G is induced.

We bound the number of k-cycles by bounding the probability that sampling vertices of G one 
by one at random results in a fixed induced k-cycle. However, instead of sampling the vertices in 
the cycle order, we do it with a small shift and sample the fourth vertex before the third. This 
is to avoid the situation that a particular 3-vertex induced path in G cannot be extended to a 
k-cycle, which happens, for example, when G is a blow-up of a k-cycle.

For any k-cycle v0v1... vk-1 contained in G, by a good sequence we mean a sequence D = 
(zi)k=Q, where zi = vi for i < 1 and i > 4 z2 = v^, and z3 = v2, i.e. v2 and v3 are in the reversed 
order. Note that there are 2k different good sequences corresponding to a single induced k-cycle. 
For any vertices v and w^>y d(v, w) we mean the minimum distance between the vertices v and 
w in G.

For a fixed good sequence D, we define the following sets:

Ao(D) = V (G),
A1(D) = N (zo),
A2(D) = {w e N(zo) : d(z1,w) = 2},
As(D)= N(z1) n N(z2),
A4(D) = {w : z0z1z3z2w is an induced path},
Ai(D) = {w : z0z1z3z2z4 ... zi-1w is an induced path} for 5 < i < k — 2,

Ak-1(D) = {w : z0z1z3z2z4 ... zk-2w is an induced cycle}.

Define the weight w(D) of a good sequence D as

k-1 1 k-1
w(D)=n |Ai(D)|-1 = nn |Ai(D)|-1.

i=0 i=1

This quantity has the following probabilistic interpretation. Suppose we want to sample k 
vertices w0, ..., wk-1 so that (wi)k=0 is a good sequence. We start with choosing w0 at random 
from all vertices of G. Next , we pick any neighbor of w0 to be wp In general, wi is a random vertex 
from the set Ai((wi)i=1). (Note that the definition of Ai(D) depends only on first i elements of 
a sequence D.) Then, w(D) is just the probability that the sequence (wi)k=Q obtained in this 
random process is equal to D.

In particular, the sum of the weights of all good sequences is at most one, since it is the sum 
of probabilities of pairwise disjoint events.

Fix a k-cycle v0v1... vk-1 in G, let C = {v0, v1,..., vk-1} be the set of its vertices, and let 
Dj = (vj, vj+1, vj+3, vj+2, vj+4,..., vj+k-1) for 0 < j < k — 1, where the indices are considered 
modulo k, be all the good sequences with the same orientation corresponding to this cycle (half 
of the total number of good sequences corresponding to this cycle).
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If we prove that

^£ w(Dj)) < M

for some number M, then w(Dj) > M Thus, by summing over all k-cycles (with both
orientations) and using the fact that the sum of the weights of all good sequences is at most one, 
we conclude that the total number of k-cycles is bounded from above by M.

Let ni,j = |Ai(Dj)|. Since

(
k-1k-1 \ 1

2 £ II nj

j = 0 i = 0 )

\ -1-1k-1 \

i=2

the maximum possible value of

(
k-1 , k-1 \ 1

e(W n j
j=0 i=2 )

(3-1)
i=2

is an upper bound on the number of k-cycles in G.
Using the inequality between harmonic mean and geometric mean of k terms and the inequality 

between geometric mean and arithmetic mean of k(k — 1) terms, we obtain

(k-1 k-1 \

z (n2j)- u“-n
j=0 i=2 )

(
k-1 k-1 \ kn n2jn “ij )

1 k- 21,
k(k -1) 2

k-1 \

+ “ij
i=2 /

k-1

^2 £ w(D )j

n

1 1

n< -
- k

n< -
- k

Claim 3.2. The following inequality holds:

k-1 / k-1 \

£ I n2j + £ ni,M - n(k -
j=0 \ i=2 /

with equality if and only if each vertex of G is connected to two vertices of C at distance two.

Proof It is enough to prove that the contribution of any vertex w e V(G) to the above sum is at 
most k — 1, and that such a contribution can only occur if w is connected to two vertices of C at 
distance two.

Notice that any vertex w e V (G) has at most 2 neighbors in C, since otherwise it creates a 
shorter odd cycle. For the same reason, since k > 7, each vert ex w satisfies the following property:

(*) There arc' at most three vertices in C at distance exactly 2 from w, and any two such vertices 
are not adjacent.

If w has no neighbors in C, then, for each j it can contribute only to n2j-. Moreover, if for 
some j we have d(w,vj) = 2, then d(w, vj-_1) > 2 and d(w, vj+1) > 2 by (*), and so w does not 
contribute to n2j- and n2j-_2. Therefore, such w contributes in total by at most k — 2.

Assume, then, that w has exactly one neighbor in C — from symmetry, let it be v0. Because 
of having only one neighbor, for each j w does not contribute to n3,j and nk_1,j. In order to 
contribute to n^j for i / {2,3, k — 1} w needs to be connected to vi+j_i, and so it can contribute 
only to n1,0 and ni,k_i+1 for 4 < i < k — 2. Finally, w can contribute to n2,j only if d(w, vj+i) = 2 
and w / N(vj). By (*), there are at most three vertices in C at distance 2 from w, but one of 
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them is v1 and w e N(v0), so w contributes to $20 0 n2,j by at most 2. It follows that in this case 
w contributes to the considered sum in total by at most k — 3 + |.

Finally, assume that w has exactly two neighbors in C. These neighbors have to be at distance 
2 in C, as otherwise it creates an odd cycle of length shorter than k. From symmetry, let vk-1 
and v1 be the neighbors of w. Then, d(w, vi) = 2 for i = k — 2, 0, 2, and there are no more i with 
this property by (*). Therefore, w contributes only to n1,k-u ny2, n2,k-3, n3,k-2, and ni,k-i for 
4 < i < k — 1, hence w contributes to the considered sum in total by k — 1. □

Using the above claim, we immediately get the wanted bound (n/k)k for (3.1). It follows that 
the total number of k-cycles in G is at most (n/k)fc, as desired.

If a graph G achieves this bound, then n needs t o be divisible by k and we need to have equalities 
in all the inequalities we considered. In particular, for each k-cycle, all the other vertices of G 
need to be connected with exactly two vertices of the cycle, which are at distance 2. Since we 
used the AM-GM inequality, all the sets Ak-1(Dj) are of the same size n/k. Moreover, they form 
a partition of V(G) and it is easy to see that G must be a subgraph of Ck © In/k. Since k is 
odd, the only k-cycles in G are those which have exactly one vertex in each Ak-1(Dj). Thus, if G 
maximizes the number of induces k-cycles, it must be indeed isomorphic to Ck © In/k.

3.3 Concluding remarks and open problems
In our proof, basically the only place where we are using that k is an odd number is to say that 
if a k-cycle is not induced (or, more generally, there is a short path in the graph between distant 
vertices of this cycle), then the graph contains a smaller odd cycle. This is not the case if k is 
an even number. Moreover, we do not have an analogue of Theorem 3.1 for even k, as forbidding 
any even cycle prevents big blow-ups of a single edge. Nevertheless, one can carefully analyze the 
proof to obtain the following result on induced even cycles.

Observation 3.3. For each even integer k > 8, any graph on n vertices without induced cycles 
Ce for I = 3 and 5 < I < k — 1 and without induced copies of graphs obtained from C6 by adding 
one or two main diagonals contains at most (n/k)k induced cycles of length k.

It seems possible that the same construction (balanced blow-up of a k-cycle) gives the best 
possible number of induced k-cycles also if we only forbid triangles.

Conjecture 3.4. For each integer k > 5 any triangle-free graph on n vertices contains at most 
(n/k)k induced cycles of Iength k.

Using Flagmatic, one can numerically check that Conjecture 3.4 should hold for k < 8.
If we forbid an l-cycle for some odd I, and try to maximize the number of k-cycles for some 

odd k larger than l, then it seems that taking a sequence of blow-ups of . 2 is still optimal, 
although these blow-ups do not necessarily need to be balanced. We state it as a conjecture.

Conjecture 3.5. For odd integers k > l > 3, we have that ex(n, Ck, Ce) is asymptotically realized 
by a sequence of blow-ups of Ce. 2.



Chapter 4

Oriented graphs and compressibility

The results in this chapter are based on joint work with Andrzej Grzesik, Justyna Jaworska, 
Aliaksandra Novik, and Tomasz Ślusarczyk, and are currently being prepared for publication. My 
main contribution is the proof of Theorem 4.14 and the proof of Theorem 4.27 for I > 4. I also 
contributed to the proofs of Theorem 4.12 and Theorem 4.19. The whole content of this chapter 
was written by me.

4.1 Introduction
Even though we will be mostly interested in oriented graphs, we shall discuss the Turan problem 
for directed graphs as well. To avoid ambiguity, we introduce the following notation. For a directed 
graph H, let exd(n, H) denote the m^imum number of arcs in an H-free directed graph on n 
vertices. Similarly, if H is an oriented graph, then exo (n, H) denotes the maximum number of 
arcs in an H-free oriented graph on n vertices.

First known results on Turan number of directed graphs are due to Brown and Harary [17], 
who determined exd(n, Kk) and exd(n, Tk) for all k > 2. Later, Haggkvist and Thomassen [50] 
found the exact value of exd(n, Ck) for every k > 3. Brown, Erdos, and Simonovits proved 
that for every family H of directed graphs there exists a sequence (Gn)n>i of Hbee n-vertex 
digraphs, each of them being a certain blow-up of some fixed directed digraph D, such that 
exd(n, H) = |E(Gn)| + o(n2) [15], and showed the existence of a finite algorithm which determines 
all such digraphs D [16]. Even though their result does not give much information about the 
digraph D itself, Valadkhan [76] observed that in the case of oriented graphs one may assume 
that D is the largest tournament whose blow-ups do not contain any H e H, which leads to the 
following crucial definition and theorem.

Definition 4.1. Let H be a family of oriented graphs. The compressibility of H, denoted by t(H), 
is the smallest k e N such that for every tournament T on k vertices there exists a homomorphism 
H t T for some H e H. If no such k exists, then we put t(H) = to. For brevity, we write 
t(H) := t({H}) for an oriented graph H.

Theorem 4.2 (Valadkhan [76]). For any family H of oriented, graphs,

exo(n, H)=(1 - Q)+ °("2).

Therefore, compressibility plays the same role in the context of oriented graphs as chromatic 
number in the context of graphs and the Erdos-Stone Theorem. In particular, determining the 
compressibility of a graph or a family of graphs is asymptotically equivalent to solving the respec
tive problem on the maximum number of arcs in oriented graphs of a given order.

Here, we focus on properties of t(H) when H has a single member. (In contrast to the 
chromatic number, in general t(H) may differ from mm{r(H) : H e H}, see Example 4.5.) If an 
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oriented graph contains a directed cycle, and therefore it cannot be mapped homomorphically to 
any transitive tournament, then its compressibility is infinite. Therefore, we shall consider only 
acyclic oriented graphs. It is also easy to notice that Tk does not contain a homomorphic image 
of any acyclic oriented graph with a directed path of order greater k, hence t(H) is always at 
least the maximum order p(H) of a directed path in H. In fact, t(H) can grow exponentially in 
terms of p(H) as witnessed by transitive tournaments (Example 4.4) or particular orientations of 
complete bipartite graphs (Proposition 4.7). Therefore, it is natural to ask, as in [76], for which 
families of acyclic oriented graphs the growth is polynomial, or for which the trivial lower bound 
is optimal, i.e. t(H) = p(H).

We show that the compressibility of acyclic oriented graphs with out-degree at most 2 is 
polynomial with respect to the maximum order of a directed path (Theorem 4.14), and that the 
same holds for a larger out-degree bound under the additional assumption that the Erdos-Hajnal 
conjecture holds (Theorem 4.12). Additionally, generalizing results for the square of a path, 
we determine the compressibility of acyclic oriented graphs with out-degree at most 2 having 
restricted structure (Theorem 4.19). Finally, generalizing the result by Valadkhan [76] for acyclic 
orientations of cycles, we prove that the equality t(H) = p(H) holds for oriented graphs H with 
restricted distances of vertices to sinks and sources (Theorem 4.27).

4.2 Basic properties of compressibility
The compressibility of some particular graphs can be easily derived, for instance for directed paths.

Example 4.3. For any k > 1, t(Pk) = k, as every tournament on k vertices contains a copy of 
Pk, i.e. a Hamiltonirn path, while there is no homomorphism Pk Tk-1.

If in the definition of compressibility we ask for the existence of an injective homomorphism 
from H to every tournament of a given order, then we obtain the definition of a i-color oriented 
Ramsey number. See [63] for more information on this concept. As some graphs have no homo
morphism into smaller oriented graphs, bounds on their compressibility follow from known bounds 
on their 1-color oriented Ramsey number.

Example 4.4. Since the compressibility of a transitive tournament —k is equal to the 1-color 
oriented Ramsey number of Tk, standard probabilistic arguments [28, 72] imply that

ci2k/2 < t(Tk) < C22k

for some constants c1 ,c2 > 0 and any k > 1. These are essentially the best known general bounds.

In general, the compressibility of a family of graphs H can differ from min{r(H) : H G H} 
significantly.

Example 4.5. If H = {P^k ,Tk} for any k > 1, the n t ) = 2k and t (Tk) > c2k/2 for some 
constant c > 0, but t(H) = k, since each tournament T on k vertices either contains C3, and 
therefore there exists a homomorphism P2k T, or is transitive.

Let p(H) be the order of a longest directed path in H. By Example 4.3, p(H) can be equiv
alently defined as the smallest k for which there exists a homomorphism H Tk. In particular, 
Example 4.4 implies that the compressibility t(H) is bounded exponentially in terms of p(H). 
This motivates the following definition.

Definition 4.6. Let G be a family of acyclic oriented graphs. We say that G is polynomially 
t-bounded if there exist constants c, d such that for every H G G, we have

t(H) < cp(H)d.
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Valadkhan [76] observed that containing a large transitive tournament is not a necessary con
dition to have r(H) exponentially large in terms of p(H). Even forbidding T3 is not enough to 
guarantee polynomial T-boundedness.

Proposition 4.7 (Valadkhan [76]). For n > 1, let Hn be the only acyclic orientation of Kn,n 
such that p(Hn) = 2n. Then, r(Hn) > 2n/2.

Note that if r(H) = 2^e. H is a subgraph of KS,t for some s,t e N, Theorem 4.2 implies 
only that exo(n, H) = o(n2) and one may æk about the order of magnitude of exo(n, H). It turns 
out that many results for the unoriented bipartite graphs can be reproved in the oriented case, 
with possibly different constants. As an example, we shall reprove Bondy-Simonovits Theorem 
and Kôvari-Sôs-Turân Theorem for oriented graphs.

Observation 4.8. For any oriented, graph H there exists a subgraph H 'of H such th at |E(H ')| > 
|E(H)| /4 and H' can be mapped homomorphically into T2.

Proof Let H1 be the underlying graph of H. It is a well-known fact that there exists a bipartite 
subgraph H2 of H1 such that |E(H2)| > |E(H1)| /2. Let H2 be the subgraph of H that corresponds 
to H2 with a bipartition (A, B); we may choose the bipartition in such a way that at least half 
of the arcs of H2 go from A to B. Choose H'to be a subgraph of H2 consisting of all arcs going 
from A to B. It is straightforward to see that there exists a homomorphism H' T2. □

Corollary 4.9 (Bondy, Simonovits [12]). For any k > 2, let D2k be the only orientation of C2k 
which can be mapped homomorphically to T2. Then, there exists a constant c > 0 such that

exo(n, D2k) < cn1+ k.

Proof Let H be any oriented graph on cn1+ k vertices. By Observation 4.8, we may assume that 
H is a subgraph of a blow-up of T2 .Let H ' be the underlying gr aph of H. By Bondy-Simonovits 
Theorem [12], if c > 0 is l^ge enough, there exists a copy of C2k in H', which corresponds to 
a copy of D2k in H. □

Corollary 4.10 (Kovari, Sos, Turan [58]). For any natural numbers s,t > 1 there exists a constant 
c > 0 such that

eXo(KS,t) < cn2-1/ min(sB.

Proof. Let H be any oriented graph on cn2-1/ min(s,t) vertices. By Observation 4.8 we may assume 
that H is bipartite with a bipartition (A, B) and that all arcs of H go from A to B. Let H' be 
the underlying graph of H. For c > 0 large enough, we conclude from Kôvari-Sôs-Turân [58] that 
there exists a copy of Ks,t in H' with s vertices in A and t vertices in B, which corresponds to 
a copy of K8it in H. □

4.3 Oriented graphs with bounded out-degree
For any integer k e N, let Dk be the family of all acyclic oriented graphs with out-degree bounded 
by k. In this section, we consider the quest ion whether Dk is polynomi ally T-bounded. First, we 
prove that this is implied by the following conjecture.

Conjecture 4.11. For every tournament T there exists a constant £ > 0 such that every tourna
ment on n vertices contains either T or a transitive tournament on ne vertices.

Alon, Each, and Solymosi [1] proved that Conjecture 4.11 is equivalent to the well-known 
Erdôs-Hajnal Conjecture [27].

Theorem 4.12. Conjecture j.H implies that Dk is polynomi ally r-boundtâ for every k e N.
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Before we prove this theorem, let us introduce the following notion. For an oriented graph H, 
we say that a subset X C V(H) is dominated in H if X C N + (v) for some v e V(H). We have 
the following easy observation.

Observation 4.13. For any k > 2 and any tournament T, if all k-subsets ofV(T) are dominated 
in T, then for any H e Dk there exists a homomorphism H T.

Proof Since H is acyclic, there is an order of the vertices of H in which all the arcs are directed 
backwards. We embed in T the vertices of H in this order using the fact that each vertex in H 
has out-degree at most k and each set of k vertices in T is dominated by some vertex of T. □

Proof of Theorem 4.12. Our goal is to prove that for every k e N there exists a tournament T such 
that for each H e Dk there exists a homomorphism H c T. If such T exists, then Conjecture 4.11 
implies that for every H e Dk, each tourname nt on p(H )1/e vertices contains a copy of either T 
or —p(H). In both cases, it contains a homomorphic image of H. Thus, t(H) < p(H)1/e.

Existence of such a tournament T follows from a probabilistic argument. Let n e N be large 
enough and T be a random tournament on n vertices. For a k-vertex subset X C V(T), let AX 
be the event that X is not dominated in T, i.e. there is no vertex v e V(T) such that X C N +(v). 
Then, A = |JXe(v(t)) AX is the event that some k-vertex subset of V(T) is not dominated by any 
vertex. The probability of A can be bounded as follows:

(k\ n-k.... 1 - (2 )) n—>oo ~------ > 0

Therefore, for large enough n, the probability of the complement of A is positive, i.e. there exists 
a tournament T in which every set of k vertices is dominated by some other vertex. By Observation 
4.13, there exists a homomorphism H C T for any H e Dk. □

In the case k = 2, one can notice that C3 © CC3 satisfies the assumption of Observation 4.13. As 
[1, Theorem 2.1] implies that the tournament C3 © C3 satisfies Conjecture 4.11 with the constant 
£ = 1/148, we have

t(H) < cp(H)148

for any H e D2. We prove a much better bound.

Theorem 4.14. There exists a constant c such that for every H e D2 we have

t(H) < cp(H)4.

Before we prove this result, recall the notion of a domination graph. Define the domination 
graph of a tournament T as the spanning subgraph dom(T) of T consisting of those arcs from 
E(T) that arc' not dominated in T. One of the most basic properties of the domination graph is 
the following easy observation, the proof of which is included for completeness.

Observation 4.15. If T is a tournament and vw, v'w' are two vertex disjoint arcs from E(dom(T)), 
then any arc between the sets {v, w} and {v',w'} completely determines the orientation of all the 
remaining arcs between those four vertices — either vv', v'w, ww', w'v e E(T), or vw', w'w, wv', 
v'v e E(T).

Proof If the arcs of the tournament T between the sets {v,w} and {v',w'} are not forming a 
directed cycle, then there exists a vertex such that either v and w or v' and w' are its out- 
neighbors, which contradicts the fact that arcs vw and v'w' are not dominated. Thus, the arcs 
between the sets {v, w} and {v', w'} are forming a directed cycle. Depending on its direction, we 
obtain one of the two possibilities listed in the statement of the observation. □

We are ready now to prove Theorem 4.14.
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Proof of Theorem f.lf. We use induction on p(H). If p(H) = 2, then t(H) = 2. If p(H) = 3, 
then H n T3, and since' any tournament on 4 vertices contains T3, we have t(H) < 4. Thus, for 
p(H) < 3 the inequality t(H) < cp(H)4 holds for any c > 2.

Let T be any tournament on cp(H)4 vertices for some constant c > 0 and p(H) > 4. We may 
assume that T does not contain a copy of Tp(H), as otherwise there would exists a homomorphism 
H n T.

Assume first that dom(T) does not contain a matching on cp(H)3 vertices. By removing from 
T the vertices of any maximum matching in dom(T), we obtain a tournament T' on at least 
cp(H )4 — 2cp(H )3 vertices, which is great er than c(p(H) — 1)4 for p(H) > 4. If we 1 et H' be the 
subgraph of H obtained by removing all sources in H, then p(H') = p(H) — 1 and we can apply 
the induction hypothesis to find a homomorphism H' n T'. Since every pair of vertices from 
V(T') is dominated in T and the niaxininnt out-degree of H is at most two, we can extend this 
homomorphism to H n T. Therefore, we may assume that there exists a subgraph M of dom(T) 
which is a matching on at least cp(H)3 vertices.

From Observation 4.15, it follows that for every arc vw e E(M) and every other vertex 
u e V(M), either vu, uw e E(T) or wu, uv e E(T). Therefore, if we pick one vertex from each arc 
in E(M) and denote by TM the subtournament of T induced by those vertices, then TM can be 
considered as equipped with a special operation of flipping a vertex, i.e. reversing the orientations 
of all arcs incident to this vertex. Indeed, this operation corresponds to replacing this vertex by 
its neighbor in M.

We want to prove that there exists a subgraph of TM isomorphic to —3 © C3, because this 
implies that H n T by Observation 4.13. Note that C3 © C3 consists of three clusters, each being 
a copy of C3. If we flip all vertices from one cluster, then this cluster wi 11 remain a copy of C3, but 
arcs between this cluster and remaining ones will reverse, resulting in a subgraph isomorphic to 
T3 © C3. Therefore, it is enough to prove that every tournament on cn3 vertices contains a copy 
of —3 © C3 or —n. As T3 © C3 is isomorphic to (C3 C3) C3, we force its appearance in two
steps using the following claim.

Claim 4.16. For any oriented graph D and constants c0, d > 0, if every Tn-free tournament on 
con4 vertices contains a copy of D, then there exists c > 0 such that evcry Tn-free tournament on 
cn4'1 vertices contains a copy of D C3.

Proof Let T' be any T^-free tournament on an'" vertices for a > tnax(3\/8c0, 6). Assume 
additionally that T' contains at most n34'2 copies of t. We want to find a lower bound for the 
number t' of copies of t C3 in T'. As every tournament on an4''1 vertices contains at least 
an4+1/3 vertices of out-degree at least an4+1/3, we may choose the source of t C3 among 
those an4+1/3 vertices. Now, since every Tn-free tournament on 2n vertices contains at least n 
copies of C3, we can count the number of sub sets of size 2n in the out-neighborhood restricted to 
fan4'1 /3"| vertices and obtain

t' >
an4'1

3
1 /3n\ 2n

©n6+1/3^_3-
2n_3

an6+2 ani+2 (ans+1)3 _ a4n46+2

3 (2n “ 3 • (2n)3 • 33 = 23 • 34

as every copy of T^ Ct will be counted this way at most ( 2n Z3 3) fimes- Since there are at

most n34'2 copies of C3 in T', there exists a copy of C3 which is dominated by at least

t' a4
n34+2 > 23-3' n4 > con4

vertices of T'. Since my subtournament of T' of order at 1 east con4 contains a copy of D, we 
conclude that the tournament T' contains the desired copy of D C3.
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In order to prove the claim, consider any T'„-free tournam ent T on cn6+1 vertices for some 
c > max(34a3c0, 3a). From the previous paragraph, we may assume that every subtournament on 
an'" vertices contains at least n36+2 copies of C3. By the same counting argument, we get that 
the number t of copies of T1 C3 in T satisfies

cn'+1
t > 3 /Pcn6+1/3i-3\

V an6 + 1-3 /

. cn46+3
3

(Fcn'+1/31^ cn4'+3

(an1^1) — 3
(cn6+1)3

Since there are at most c3n36+3 
at least

copies of —3

c3n36+3 >

c4n46+3
(an'+1)3 • 33 = a3 • 34 .

in T, there exists a copy of C3 that is dominated by

c
a3-3'

• n6 > c0n6t

vertices of T. Thus, T contains the desired copy of D C3. □
Applying the above claim for n = p(H), D = C3, 3 = 1, and c0 > 1, and then for D = (—3 

—3) and 3 = 2 we conclude that the tournament TM on cp(H)3 vertices contains a copy of T3 © —3 
or Tp(H), which ends the proof of Theorem 4.14. □

For certain subclasses of Dk, it is possible to find homomorphisms into tournaments of even 
linear order. For instance, Draganic et al. proved the following result for powers of paths.

Theorem 4.17 (Draganic et al. [23]). For every n, k > 2, every tourname nt on n vertices contains 
a k-th power of a directed path of order n/24k+6k + 1. Moreover, for k = 2, every tournament on 
n vertices contains a square of a directed path of order [2n/3] and this value is optimal.

A square of a directed path, considered in Theorem 4.17, is an oriented graph obtained from a 
directed path by adding arcs between vertices at distance 2. A generalization of this structure is 
an oriented graph obtained from a directed path by adding arcs between vertices at some different 
distance.

Definition 4.18. For any 2 < I < k, let —k (I) be the oriented graph on k vertices v1,..., vk with 
arcs v^^ for 1 < i < k — 1 and vivi+^>r 1 < i < k — I. In other words, Pk (I) is a directed path 
on k vertices with additional arcs between vertices at distance I. Let also Ck (I) be the oriented 
graph on k vertices w0, w1,..., wk-1 with arcs wiwi+1 (mod k) and wiwi+l (mod k) for 0 < i < k.

As 3(I) is a subgraph of the l-th power of P^, Theorem 4.17 implies that t(P^(I)) is linear in 

terms ofp(Pk (l)) = k. But the constrnt provided in Theorem 4.17 for large l is very far from being 
optimal. The following theorem closes this gap and shows that for l = 2 and 3, the compressibility 
of Pk (l) differs from the compressibility of Pk.

Theorem 4.19. For every 2 < l < k, the following holds
• t (Pk(2))= L ' J,
• L7k— J < T(X(3)) < 3k,

• t(Pfc(l)) = k if l > 4.

Proof. For l = 2, the graph 3(2) is just a square of a path, and Theorem 4.17 implies that every 

tournament on [3k—1] vertices contains a copy of Pk(2). On the other hand, there are tournaments 
on |_3k—— 1 vertices that do not have a homomorphism from —k (2) For odd k, we consider 
the tournament P(k-1)/2 © C3, while for even k consider the tournament T1 (Pk/2-1 © C3). 
The considered tournaments have exactly |_3fc—^ — 1 vertices and any homomorphism of Pk 
into them maps some three consecutive vertices into a copy of C3, which cannot happen for the 
homomorphism of Pk (2).
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If I > 4 then t(Pk(l)) > k there exists no homomorphism Pk(l) ? Tk-1. To prove 
the upper bound, consider any tournament T on k vertices. Then, T admits a decomposition 
T1 ... Tm into strongly connected components. If any of those components is of size at least
I — 1, then it contains a copy of C, and since there is a homomorphism Pk (I) ? C_1, we have 
Pk (I) ? T. Otherwise, all strongly connected components are of size strictly smaller than I — 1. 
This means that any function that maps the Hamiltonian path of Pk(l) into any Hamiltonian path 
of T induces a homomorphism Pk(l) ? T.

We are left with the hardest case I = 3. To prove the lower bound, consider a tournament T 
on 7 vertices v1,..., v7, with arcs vivj for 1 < i < j < 6 and N+(v7) = {v1, v2, v4}, see Figure 4.1. 
We want to prove that there exists no homomorphism P7(3) ? T. This implies that there exists 
no homomorphism of P6a+1(3) ? Ta 0 T for any integer a > 1 and the claimed lower bound 
follows.

Figure 4.1: Tournament T from the proof of Theorem 4.19 for I = 3. The bottom vertices induce 
a transitive tournament.

Assume that x^ x2,..., x7 are the images of consecutive vertices of —7(3) under some homo
morphism P7(3) ? T. As the vert ices v1,..., v6 induce a transitive tournament, there must exist 
the smallest i such that xi = v7. If i = 1, then since x1x4 is an arc and x1x2x3x4 is a path, we 
must have x4 = v4. But then it is not possible to find a path x4x5x6x7 with an arc x4x7. If 
2 < i < 4, then similarly xi+3 = v4, hence xi+2 e {v1,v2,v3} But since xi-1xi is an arc, we 
have xi_1 e {v3, v5, v6} and it is not possible for xi-1xi+2 to be an arc. If 5 < i < 6, then by 
a symmetric argument we conclude that xi-3 = v3, xi-2 e {v4, v5, v6} and xi+1 e {v1,v2,v4}, 
hence xi-2xi+1 cannot be an arc. Finally, if i = 7, then we must have Xj = vj for every 1 < j < 7, 
but in this case x4x7 is not an arc. This finishes the proof of the lower bound.

In order to prove the upper bound, we apply the following theorem that characterizes the 
general structure of the domination graphs of tournaments. Here, by a directed caterpillar we 
mean a directed path with possible additional outgoing pendant arcs.

Theorem 4.20 (Fisher et al. [34]). The domination graph of a tournament is either an odd directed 
cycle with possible outgoing pendant arcs and isolated vertices, or a forest of directed caterpillars.

We prove by induction on k that for every tournament on 3k vertices there exists a homomor
phism from Pk(3). For k < 3 an oriented graph Pk(3) is just a directed path Pk, which can be 
mapped homomorphically into any tournament on k vertices (Example 4.3).

For k > 3, let T be any tournament on 3k vertices. Note that Pk(3) ? C5(3), so we may 
assume that T does not contain C5(3). Denote vertices of Pk(3) by w1,..., wk with arcs of the 
form wiwi+1 and wiwi+3. Whenever we use the induction hypothesis to obtain a homomorphism 
—k-1(3) ? T, we think of this —k-1(3) as of a subgrap h of —k (3) induced by vertices w2, w3,..., wk. 
In particular, in order to find a homomorphism Pk(3) ? T, we only need to map w1 to a vertex 
dominating the images of w2 and w4. This is possible exactly when the images of w2 and w4 
induce an arc which does not belong to E(dom(T)).

It turns out that if dom(T) contains a cycle of length at least five, two caterpillars, or a 
caterpillar with a directed path of length at least three, then T must contain C5(3). It follows 
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from the following observation.

Observation 4.21. If dom(T) contains two vertex disjoint arcs, whose sources are not connected 
by an arc in dom(T), then T contains a copy of —5(3).

Proof Let vw and v'w' be the two arcs in dom(T), and without loss of generality let v'v e 
E(T) \ E(dom(T)). By Observation 4.15, all arcs between vw and v'w' are then completely 
determined. Moreover, since v'v e E(dom(T)), there exists a vertex u which dominates v'v, 
in particular it is neither w nor w'. Since vw and v'w' are not dominated, we have that wu, 
w'u e E(T). Now, it is straightforward to check that vertices v, w, vj w' and u, in this order, 
induce a copy of C5(3), as depicted in Figure 4.2. □

Figure 4.2: C5(3) created in T using Observation 4.21. Green arcs belong to E(dom(T)).

By Theorem 4.20 and Observation 4.21, dom(T) must be either a directed triangle with some 
outgoing arcs or a directed caterpillar with a longest directed path of length at most 2. In 
particular, there exist at most three vertices with a positive out-degree in dom(T), hence it is 
possible to find a subset D C V(T) of size at most 3 such that each arc from E(dom(T)) is 
incident to at least one vertex from D. Let T' be the subtournament of T induced by V(T) \ D. 
Since |V(T')| > 3(k — 1), by the induction hypothesis there exists a homomorphism Pk-1 (3) T'. 
Moreover, the arc induced by the images of w2 and w4 cannot belong to E(dom(T)), hence we 
can extend this homomorphism to Pk(3) T. □

4.4 Compressibility of l-layered graphs
In this section, we study a class of acyclic oriented graphs H for which t(H) = p(H). The 
considered class contains in particular graphs Pk (l) for l > 4, for which the equality holds by 
Theorem 4.19, as well as some graphs with out-degree not bounded by p(H). It also generalizes 
the results of Valadkhan [76] for orientations of trees and cycles.

Definition 4.22. We say that an acyclic oriented graph H is l-Za^ered if for every vertex v e V(H) 
which is not a sink nor a source there exists a pair (i, j) e Zj2 such that the length of every directed 
path from any source of H to v is congruent to i modulo l and the length of every directed path 
from v to any sink of H is congruent to j modulo l. If a vertex v was assigned a pair (i, j), we 
will say that it is of type (i, j).

For l > 2, let Le denote the family of all l-layered acyclic oriented graphs.

Example 4.23. For any 3 < l < k, the graph —k (l) is (l — 1)-layered.

Example 4.24. Consider an acyclic oriented graph H and some' integer l > 2, and replace each 
arc uv of H by a directed path of length l from u to v. Then, the resulting graph, also called an 
(l — 1)-subdivision of H, is l-layered.
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Example 4.25. For any integers k > 3 and l > 2 each acyclic orientation of a cycle on k vertices 
is l-layered.

Example 4.26. An acyclic oriented graph obtained from a directed path v1v2.. .vk by adding 
a new vertex v and an arc vk-2v is not l-layered for any l > 2. It follows from the fact that the 
distance from vi to v is k — 2 while from vi to vk it is k — 1. On the other hand, it is easy to 
observe that any acyclic orientation of a tree can be mapped homomorphically to some directed 
path, which is l-layered for every l > 2.

Since the oriented graph in Proposition 4.7 is ^layered, the class L2 is not polynomially t- 
bounded. However, for l > 3 the situation is completely different.

Theorem 4.27. Let l > 3 and H G Lz with p(H) > 6. Then, t(H) = p(H).

Proof. Firstly, observe that H cm be mapped homomorphically into —l —i. Indeed, if we 
denote the consecutive vertices of C by w0, wi,..., wl-i and the only vert ex of Ti by w, then we 
can define a map H Ci Ti in the following way: assign every source of H to w0, every sink 
of H to w, and every vertex of type (i,j) to Wi. It is straightforward to check that this is indeed 
a homomorphism.

If T' is any tourname nt on 5 vertices containing a c opy of C5, then some vert ex of T' is 
contained in a copy of C3 and a copy of C4. Thus, there is a homomorphism Ci T' for any 
l > 3. In particular, tliere always exists a homomorphism H T' Ti. An analogous argument 
shows that there always also exists a homomorphism H Ti T'.

Fix now a tournament T on p(H) vertices. Assume that T is not strongly connected. If at least 
one strongly connected component is of size at least min(5, l), then there exists a homomorphism 
H T by the observation above. Therefore, we may assume that all strongly connected compo
nents of T are of size smaller than min(5, l). For each v G V(H), let l(v) denote the length of any 
longest directed path in H starting at v. Choose any Hamiltonian path P in T with vertices in 
order vp(H)-i,..., v0. Since every strongly connected component of T is of size smaller than l, we 
have vivj G E(T) for any i — j > l. Define a map H T by assigning each v G V(H) to vl(v). 
Since for each arc vw G E(H) we have either l(v) — l(w) = 1 or l(v) — l(w) > l, it follows that 
this map is indeed a homomorphism.

Since any strongly connected tournament on p(H) vertices contains a strongly connected sub
tournament on 6 vertices, it is enough to show that there exists a homomorphism from H to any 
strongly connected tournament on 6 vertices.

Let us introduce the following tournaments on 5 vertices:

• Ta, obtained from 65(3) by reversing the arc wiw4;

• Tb, obtained from (2) by reversing the arc wiw4;

• Tc, obtained from T5 by reversing the arc between the sink and the source;

• Td, obtained from Tc by reversing the arc w3w5;

• Te, obtained from Tc by reversing the arc w2w4.

All of them are depicted in Figure 4.3. Let T = {Ta, Tb, Tc, Td, Te}. By showing a series of claims 
we will prove that every strongly connected tournament on 6 vertices contains some tournament 
from T, and that there exists a homomor phism from H to any tourname nt in T.
Claim 4.28. Every strongly connected tournament on 5 vertices is isomorphic to c5(2) or some 
T G T.

Proof Let T be a strongly connected tournament on 5 vertices wi,..., w5 with arcs w5wi and 
wi wi+i for 1 < i < 4. If there are no vert ices in T with out-degree equal to 3, the n d+ (wi) = 2 
for every 1 < i < 5 and T is isomorphic to C5(2) (sinee C5(2) and C5(3) are isomorphic).
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Figure 4.3: Tournaments used in the proof of Theorem 4.27.

Assume now that there is exactly one vertex v in T with out-degree 3. Then, there is also 
exactly one vertex w with out-degree 1. If vw e E(T), then by reversing an arc vw we obtain 
a tournament T' with all vertices having out-degree 2, hence T' is isomorphic to C5(3) and T 
is isomorphic to either Ta or T^ If wv e E(T), then the three remaining vertices of T are in 
out-neighborhood of v and in-neighborhood of w. They must induce a copy of C3, sinee v is the 
only vertex with out-degree 1. But then, T is isomorphic to Te.

We are left with the case when there are two vertices with out-degree 3. It is easy to see that 
they must be neighbors in a copy of C5 contained in T, which determines all but one arc in T. 
Depending on the orientation of this remaining arc, we conclude that T is isomorphic either to Tc 
or to Td. □

Claim 4.29. Every strongly connected tournament on 6 vertices contains a copy of some T e T.

Proof. By Claim 4.28, it is enough to find a strongly connected subtournament with a vertex of 
in-degree or out-degree equal to 3. Let T be any strongly connected tournament on 6 vertices. It 
must contain a copy of C5 and vertices of this copy induce a strongly connected subtournament 
T '.If T' is isomorphic to some element of T, then we are done. Otherwise, by Claim 4.28, it must 
be isomorphic to C5(2); let wj.,..., w5 be consecutive vertices of the outer directed cycle of T', and 
let w denote the remaining vertex of T. Since T is strongly connected, w has in-neighbors and out- 
neighbors in Twithout loss of generality, we may assume that wjw, ww2 e E(T). If ww4 e E (T), 
then the subtournament T1 induced by vertices w, w2, w3, w4, w1 is strongly connected and in
degree of w4 in Tj is equal to 3. If w4w e E(T), then the subtournament T2 induced by vertices 
w, w2, w4, w5, w1 is strongly connected and out-degree of w4 is equal to 3. In both cases, Tj or T2 
is isomorphic to some element of T, which finishes the proof. □

To simplify the proof that H has a homomorphism to each T e T, we want to construct an 
oriented graph Qi such that H can be mapped homomorphically into Ql and then for each T 
provide a homomorphism from Qi. For every 0 < i < f, let Di be a directed cycle on a vertex 
set {(j, i — j) e Z2 : 0 < j < f} with arcs from (j, i — j) to (j + 1, i — j — 1) for every 0 < j < f. 
Define Qe as a disjoint uni on of Di5 over all 0 < i < f, and two additional vertices vs, vt, with arcs 
joining vs to vt, vs to (1, i), and vt from (i, 1) for all 0 < i < f. Since the graph H is f-layered, we 
have a natural homomorphism H Qe which maps all sources of H to vs, ^1 sinks of H to vt, 
and all vertices of type (i, j) to the vertex (i, j) for every pair (i, j) e Z2-
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Claim 4.30. Let T be a tournament on at least 5 vertices. Assume there exist vertices u, v e V(T) 
such that uv e E(T) and:

• vw, wu, uz, zv e E(T) for some w, z e V(T) and w is contained in a copy of —3,

• ux, xy, yv e E(T) for some x, y e V(T) and an arc xy is contained in a copy of — and 

a copy of —4.

If l = 3 or l = 4 then there exists a homomorphism Ql 3 T.

Proof Start defining the homomorphism Ql 3 T by assigning vs to u and vt to v. It remains 
to define homomorphism Di 3 T for every 0 < i < l such that the image of (1,i) is in out- 
neighborhood of u and the image of (i, 1) is in the in-neighborhood of v. Assign (1,1) to z, (1, 2) 
to x, and (2,1) to y. If l = 3, then assign (0,1) to u and (1,0) to v. If l = 4 then assign (0,1) 
and (1,1) to z, (3,1) to u, and (1, 3) to v. All of these assignments are depicted in Figure 4.4. 
Using the assumptions in the claim, it is straightforward to check that this can be extended to 
a homomorphism Ql 3 T. □

Figure 4.4: Partial homomorphisms Q3 3 T aid Q4 3 T from the proof of Claim 4.30. The arc 
xy is ^sumed to be contained in a copy of —4 and a copy of —3, while the vertex z is assumed to 
be contained in a copy of C3.

Claim 4.31. For every 3 < l < 5 and every T e T, there exists a homomorphism Ql 3 T.

Proof If l = 3 or l = 4, it is enough for every T e T to find vert ices u, v e V (T) satisfying the 
assumptions of Claim 4.30. It is easy to verify that one can choose:

w4 as u and w5 as v for Ta,

wi as u and w4 as v for Tb,

wi as u and w4 as v for Tc,

w5 as u and w3 as v for Td,

wi as u and w4 as v for Te.

Consider now l = 5. Note that for every T e T there is a copy of C5 with consecutive vertices 
w1, w2,..., w5, and denote it by Ct- Each Di for 0 < i < 5 can be mapped homomorphically 
into Ct in five different ways. We claim that for every T e T there exists a homomorphism 
Q5 3 T that maps each Di into Ct. Note that if the image of vs is of out-degree k, then for every 
0 < i < 5 there are k choices for a homomorphism Di 3 Ct that agrees with vs, and if the image 
of vt is of in-degree k', then there are k' choices for a homomorphism Di 3 Ct that agrees with 
vt. Moreover, for every T e {Ta, Tb, Tc, Td} there exist vertices u,v e V(T) such that d+(u) = 3, 
d-(v) = 3, and uv e E(T). Therefore, if we choose u as the image of vs and v as the image of vt,
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then for each 0 < i < 5 there exists a homomorphism Di —T agreeing with vs and vt simply by 
the pigeonhole principle. Finally, for Te it is straightforward t o verify that one can choose w1 as 
the image of vs and w4 as the image of vt. □

Claims 4.29 and 4.31 together imply for every 3 < I < 5 that Ql can be mapped into any 
strongly connected tournament on 6 vertices. Hence, to finish the proof of the theorem, it is 
enough to show that for I > 6 the graph Ql also can be mapped homomorphically into every 
T e T. Note that for every T e T, each vertex of T is contained in a copy of —3. Therefore, if 
v1v2v3v4 is a directed path in Di for some 0 < i < I and neither v2 nor v3 are neighbors of vs or 
vt in Qi, we can aim to find a homomorphism Di T which maps v1 and v4 to the same vertex 
of T, thus essentially reducing the length of Di by 3. Since we can always perform this operation 
as long as the length of the cycle is at least 6, we can reduce the problem to the case I < 5, which 
was proved in Claim 4.31. □

Note that the assumed bound p(H) > 6 in Theorem 4.27 c^not be improved. Indeed, —5(2) 
does not contain two vertices u and v with paths of length 1, 2 and 3 from u to v, so the oriented 
graph H consisting of paths of lengths 1, 2, 3 and 4 with common endpoints is l-layered with 
p(H) = 5 and t(H) > 6. Analogous constructions can be provided for p(H) = 4 and p(H) = 3. 
In the cases p(H) < 5 one' can easily show that the best bounds are t(H) < 2 when p(H) = 2, 
t(H) < 4 when p(H) = 3, and t(H) < 6 when p(H) e {4, 5} and H is l-layered.

4.5 Concluding remarks
It is straightforward to construct, for any k > 0, a sequence (Hn)n>1 of acyclic oriented graphs 
Hn e Dk such th at p(Hn) = n and for every H e Dk there exists a homomo rphism H Hp(H). 
Therefore, to understand the asymptotic behavior of the compressibility of acyclic oriented graphs 
with out-degree at most k, it suffices to examine the sequence (Hn)n>p However, even for k = 2 
we were able to compute t(Hn) only for a few initial values of n, and we were unable to find 
a lower bound for t(Hn) better than linear.

Let T be a tournament on 11 vertices v0,..., v10 with arcs vivi+j for j e {1, 3,4, 5, 9} and 
indices taken modulo 11. One can verify that every copy of —3 in T is dominated by some vertex, 
hence every H e D3 cm be mapped homomorphically into T 0 —3. Therefore, to prove that 
D3 is polynomially 'r-bounded, it suffices to show that T satisfies Conjecture 4.11. It would be 
interesting to prove Conjecture 4.11 for this graph, especially with some low exponent.

Problem 4.32. For which acyclic oriented graphs F is the family of F-free acyclic oriented graphs 
polynomially t-bounded?

Theorem 4.14 shows that it holds for F = K1,3. Also, by Proposition 4.7, if the family of 
F-free acyclic oriented graphs is polynomially then F must be bipartite.

The following definitions and notation are taken from [71]. We say that an oriented graph 
H is an o-clique if every two vertices of H arc' joined by a directed path of length at most 2. 
Define the absolute oriented clique number of H, denoted by wao(H), as the maximum size of 
an o-clique contained in H, and the relative oriented clique number of H, denoted by wro(H), as 
the maximum size of a subset S C V(H) such that every two vertices of S are joined in H by 
a directed path of length at most 2. It is clear that if H is an o-clique and T is a tournament, 
then any homomorphism H T must be injective, and for a general oriented graph H we have 
wao(H) < wro(H) < |V(T)|. For k > 3, let Ak denote the family of all acyclic oriented graphs 
with absolute clique number at most k, and let Rk denote the family of all acyclic oriented graphs 
with relative clique number at most k. We have Rk C Ak and one may observe that Dk C Rk2+1.

Conjecture 4.33. For k > 3, the families Ak and Rk are polynomially T-bounded.



Chapter 5

Generalized Turân-type problems for 
directed cycles

The results in this chapter are based on joint work with Andrzej Grzesik, Justyna Jaworska, 
Piotr Kuc, and Tomasz Slusarczyk, and are currently being prepared for publication. My main 
contribution is the proof of Theorem 5.4. I also contributed to the proofs of Theorems 5.2, 5.3, 
5.5, 5.6, and 5.7. The whole content of this chapter was written by me.

5.1 Introduction
In Chapter 3, we defined the generalized Turan number ex(n, T, H) as the maximum number of 
copies of T in an H-free graph on n vertices. Depending on the choice of T and H, the behavior 
of this quantity and the extremal constructions vary significantly, and even in the case when both 
T and H are cycles, we still did not reach full understanding of the problem.

In this chapter, we shall study this problem in the setting of oriented graphs. It is natural to 
define exo(n, T, H) for oriented graphs T and H as the maximum number of copies of T in an H- 
free n-vertex oriented graph. For T = T2, we get just exo(n, H), which was discussed in Chapter 4, 
and we are not aware of any published results for T other than T2. Still, some general results 
for unoriented graphs hold for oriented graphs as well. For instance, the proof of Proposition 2.1 
in [3] translates immediately to the following proposition.

Proposition 5.1 (Alon, Shikhelman [3]). Let T be a fixed oriented, graph on k vertices. Then, 
exo(n, T, H) = 0(nk) if and only if there exists no homomorphism H T. Otherwise, we have 
exo(n, T, H) < nk-e(T,H) /or some constant e(T, H) > 0.

On the other hand, if we do not forbid any substructure, we end up with a problem of maxi
mizing the number of copies of some fixed oriented graph T in n-vertex tournaments, which was 
considered in particular for directed cycles. Let C(n, k) be the maximum number of copies of Ck in 
an n-vertex tournament, and R(n, k) be the expected number of copies of Ck in a random n-vertex 
tournament. Define also c(k) = lim,, . v C(n, k)/R(n, k). The value of C(n, 3) was determined 
already by Kendall and Babington Smith [55], and independently by Szele [73]. Later, C(n, 4) was 
determined by Beineke and Harary [8], and independently by Colombo [21]. Recently, Komarov 
and Mackey [56] proved that c(5) = 1. Bartley |7| and Day [22] conjectured that c(k) = 1 if and 
only if k is not divisible by 4, and they showed that c(k) > 1 for 4 | k. Grzesik et al. [43] proved 
this conjecture and determined the value of c(k) up to a small error term o(1).

In the following, we shall investigate exo(n, T, H) when both T and H are directed cycles. By 
Proposition 5.1, we may distinguish the sparse case when T = Ck and H = Ckt for k > 3 and 
t > 2, and the dense case when T = Ck and H = Ce for k ] l.

29
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In the sparse case, which we discuss in Section 5.2, our first result states that £(—k, Ckt) = 1 
in Proposition 5.1.

Theorem 5.2. Let k > 3 and t > 2. Then, exo(n, C3, Ckt) = 0(nk-1).

We also find the exact asymptotics of exo(n, C3, C3).

Theorem 5.3. We have exo(n, C3, C3) = n2/4 + o(n2).

In the dense case k \ l, which we discuss in Section 5.3, we determine asymptotically exo(n, 3, 3) 
for k > 6 and sufficiently large l such that k is odd or l is even.

Theorem 5.4. Let k > 6 and l > 2k2 — 4k + 1. Assume that 2 \ k or 2 | l. Define d > 2 as the 
smallest divisor of k which does not divide l. Then, exo(n, —k, —¿) = k • (d)k 1 + o(nk).

We also determine exo(n, C3, C3) asymptotically for k e {3,4, 5} and l > k not divisible by k.

Theorem 5.5.

a) exo(n, Ct, C3) = [3p«=!p;2l = 4, 5.

b) exo(n, C3, C3) = 27 + O(n2) for l > 7 not divisible by 3.

Theorem 5.6. For l > 5 not divisible by 4 we have exo(n, C4, C3) = (4)4 + o(n4).

Theorem 5.7.

a) exo(n, Ct, C3) = 16 • (5)5 + o(n5).

b) exo(n, C3, C3) = (5)5 + o(n5) for l = 6 a,nd, l > 8 not divisible by 5.

5.2 Sparse case
In this section, we shall prove results regarding exo(n, C3, C3) when k | l. Let us start by proving 
that exo(n, C3, C'kt) = 0(nk-1) for k > 3 and t > 2.

Proof of Theorem 5.2. For the lower bound, just observe that if we substitute I^ n-1 j for every but 
one vertex of 3 and we add n — (k — 1) [k—|J isolated vertices, then we obtain a C^-free oriented 
graph on n vertices with at least [3=1 Jk-1 copies of Ck.

For the upper bound, let G be any extremal graph on n vertices. We will say that an arc is 
thick if there exist at least k2tnk-3 different copies of Ck containing this arc. Repeat the following 
procedure — as long as there exists an arc in G which is not thick, remove this arc from G. This 
way, we will remove O(nk-1) copies of Ck from G and either every arc in G will be thick or G 
would have no arcs.

Assume that the theorem does not hold, and so there exist thick arcs in G. We will consider 
two cases.

Case 1: t < k — 1.
Let v, w e V(G) be any two vertices of G. We claim that every two directed paths of length 

t which start in v and end in w share' at least one' internal vertex. Otherwise, let Qi and Q2 be 
directed paths of length t that share only the endpoints. Then, since each arc of G is thick, we 
can find t arc-disjoint distinct copies D1,..., Dt of Ck, c'acli containing exactly one arc of Q1 and 
sharing no vertex outside of Q15 which are vertex disjoint from Q2 — {v, w}. But then, there exists 
a copy of Gkt in D1 U ... U Dt U Q2, which is a contradiction.
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In particular, if we pick any two vertices v and w of G, then there exist at most (t — 1)2nt-2 
paths of length t from v to w. To see this, just fix any path Q from v to w and observe that any 
other path must share at least one internal vertex with Q.

Now, we can count copies of Ct in G in the following way. First, we choose two vertices 
v,w e V(G). Then, we choose a directed path of length t from v to w. Finally, we choose 
remaining vertices to close the cycle. This way, we obtain at most

n2(t — 1)2nt-2nk-t-1 = O(nk-1)

different copies of —t- Since each copy of Ct was counted at least once, we get the desired upper 
bound.

Case 2: t > k.
We prove by induction on t that exo(Ck, Ckt) = O(nfc-1). The basis of induction was handled 

in Case 1.
We claim that there are no copies of Ctt-fe(fe-2) in G. Otherwise, let C be such a copy and 

vw e E(C). Sinee vw is thick, we can find a directed path Q of length k — 1 from w to v which is 
vertex disjoint from C — {v, w} In the same way, we can find k — 1 directed paths Q1,...,Qk-1, 
such that the sum Q1 U ... U Qk-1 is a directed path from v to w of length (k — 1)2 which is 
vertex disjoint from C — {v, w} But then, C U Q1 U ... U Qk-1 would contain a copy of Ct„, where 
m = kt — k(k — 2) — 1 + (k — 1)2 = kt, a contradiction.

Since G is Ckt_fe(fe_2)-free, we get by induction that it can have at most O(nk-1) copies of Ct, 
which finishes the proof.

□
We shall also prove that exo(n, Ct, Ct) = n2/4 + o(n2).

Proof of Theorem 5.3. Let G be any extremal oriented graph on n vertices. We may assume that 
each arc of G is contained in at least one copy of C3. We will say that an arc of G is thin if it is 
contained in exactly one copy of C3; otherwise, we will say it is thick.

The crucial observation is that each copy of C3 in G contains at least one thin arc. Indeed, 
if there was a copy of C3 consisting only of thick arcs vw wu, and uv, then we could find three 
more vertices v',w',u' in G such that vw'u, uv'w, and wu'v are directed 3-cycles, and it would 
result in a directed 6-cycle vw'uv'wu'.

Since each copy of C3 contains at least one thin arc and any such arc cannot belong to any 
other copy of C3, we conclude that exo(n, C3, Gs) is bounded from above by the number of thin 
arcs in G.

Let vw be any thin arc. Observe that the following configurations are not allowed as subgraphs 
of G:

blow-up of a — blow-up of a —

First configuration is not allowed just by the definition of a thin arc. For the second con
figuration, one can find two copies of C3, each sharing one of two upper arcs, to form a copy 
of-!.
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Consider a subgraph Go of G consisting only of thin arcs of G. By Lemma 2.6, we can remove 
all copies of C3 and T3 from Go by removing o(n2) arc. But then, its underlying graph would be 
C3-free, hence by Motel’s Theorem [64] it would contain at most n2/4 edges. Therefore, Go has 
at most n2/4 + o(n2) arcs, which finishes the proof. □

5.3 Dense case
In this section, we shall prove results regarding exo(n, 3, —I) for k \ I. The situation is simple for 
k = 3, since there exists a construction which is asymptotically extremal for every value of I.

Proof of Theorem 5.5. Balanced blow-up of —3 on n vertices contains [ f ITn—11T n-r 1 copies of

G3 and is Gi-free for any I > 4 not divisible by 3, which gives the lower bound on exo(n, G3, Gl).
For the upper bound, we shall prove first the following claim.

Claim 5.8. For any n > 1, we have exo(n, 3, —3) = Tf 1Tn-11Tn—21-

Proof. Since balanced blow-ups of 3 are T3-free, it is enough t o prove the upper bound. Let G be 
any extremal oriented graph on n vertices and let G' be its underlying graph. Then, G' is K4-free, 
since any orientation of K4 contains a copy of T3. In particular, exo(n, G3,T3) < ex(n, K3, K4). 
By the results of Erdos [26] and Zykov [79], ex(n, K3,K4) = [f 1Tn—11Tn—21 and the claim 
follows. □

Let l e {4,5} and take any Ce-free oriented graph G on n vertices. We may assume that each 
arc of G is contained in some copy of C3. By Claim 5.8, it is enough to show that G is T3-free. 
But if T was a copy of T3 in G, then we could find for each arc of T a copy of C3, and the union 
of those copies would contain a copy of 3 and a copy of —5. This finishes the proof for l e {4,5}.

Let now l > 7. We shall prove by induction that exo(n, C3,Ce) = n3/27 + O(n2). For any 
Ce-free oriented graph G on n vertices, let G' denote the subgraph of G obtained by removing 
successively all arcs of G which ^e contained in at most l copies of C3. This way, we removed 
at most ln2/2 copies of C3. As in C^e 2 of the proof of Theorem 5.2, one can show that G' is 
Ce-3-free, hence the result follows by induction. □

Let us now discuss the case k = 4. Since every copy of C4 must be induced in C3-free oriented 
graphs, exo(n, C4, C3) is not greater thrn the maximum number of induced copies of C4 in an 
n-vertex oriented graph. The latter is shown by Hu et al. [52] to be asymptotically maximized by 
iterated blow-ups of C4, which are also C3-free. Hence, exo(n, C4, C3) = n4/252 + o(n4).

For l > 5 not divisible by 4, we shall prove that exo(n, —4, —e) = (n/4)4 + o(n4), which is 
attained e.g. by balanced blow-ups of —4.

Proof of Theorem 5.6. We need only to show the upper bound. Let G be any —¿-free oriented 
graph on n vertices. By Lemma 2.6, we may remove from G all homomorphic images of Ce by 
removing at most o(n2) arcs, hence by removing at most o(n4) copies of C4. In particular, we may 
assume that 5 < l < 7.

Case l = 5 or l = 7
We may assume that each arc in G is contained in some copy of C4. But then, G must be 

T3-free, as otherwise we would find a copy of a homomorphic image of Ce. Therefore, it is enough 
to prove the following.

Claim 5.9. For every n > 1, we have exo(n, 3, —3) < (n/4)4.
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Proof. Proof is based on a method developed by Kral’, Norin, and Volec [59]. For any directed 
4-cycle v0v1 v2v3 contained in G, by a good sequence we mean a sequence D = (zi)3=0, where 
z0 = vi, z1 = vo, z2 = v2, and z3 = v3, i.e. v0 and v1 are in the reversed order. Note that there 
are 4 different good sequences corresponding to a single 4-cycle.

For a fixed good sequence D, we define the following sets:

Ao(D) = V (G),
Ai(D) = N -(zo),
A2(D) = N +(zo),
A3(D) = N +(z2) n N-(zi).

Define the weight w(D) of a good sequence D as

3 i 3

w(D) = n |A(D)|-1 = - n |Ai(D)|-1.
i=0 - i=1

Recall (from Chapter 3) that this quantity has the following probabilistic interpretation. Sup
pose we want to sample four vertices w0,..., w3 so that (wi)3=0 is a good sequence. We start with 
choosing w0 at random from all vertices of G. Next, we pick some in-neighbor of w0 to be w1. 
In general, Wj is a random vertex from the set Aj((wi)j'=0). (Note that the definition of Aj(D) 
depends only on first j elements of a sequence D.) Then, w(D) is just the probability that the 
sequence (wi)3=0 obtained in t his random process is equal to D.

In particular, the sum of the weights of all good sequences is at most one, since it is the sum 
of probabilities of pairwise disjoint events.

Fix a 4-cycle v0v1 v2v3 in G, let C = {v0, v1, v2, v3} be the set of its vertices, and let Dj = 
(vj+1,vj, vj+2, vj+3), for 0 < j < 3 where the indices are considered modulo 4, be all good 
sequences corresponding to this cycle.

If we prove that
^E w(Dj)) < M

for some number M, then V3 o w(Dj) > M-1. Thus, by summing over all directed k-cycles and 
using the fact that the sum of weights of all good sequences is at most one, we get that the total 
number of copies of C4 in G is bounded from above by M.

Put —i,j = IAi(Dj)|. Since

^E w(Dj -1

= n
(¿ń nj

V=o i=i )

-1

,

the maximum possible value of
(¿ń j

V=0 i=1 /

-1

(5-1)n

is an upper bound on the number of copies of C4 in G.
Using the inequality between harmonic mean and geometric mean of 4 terms and the inequality 

between geometric mean and arithmetic mean of 4 • 3 = 12 terms, we obtain

n
(¿ń j

V=0 i=1 /

-1

n< -
- 4

(ńń )

V=0 i=1 /

n< -
- 4

(ś ¿¿-j)

\ j=0 i=1 )

1
4 3

= (Eń j

V=0 i=0 )

-1
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Claim 5.10. The following inequality holds:

3 3

5S5Sni,j < 3n 
j=0 i=1

with equality if and only if each vertex of G has exactly one in-neighbor and one out-neighbor in 
C, and those neighbors are not adjacent.

Proof For any w e V(G), let ni,j(w) = 1 if w e Ai(Dj) and ni,j(w) = 0 otherwise. Then,

ni,j = ni,j(w),
j=0 i=1 w£V(G) j=0 i=1

hence it is enough to show that for every w e V(G) we have

3 3

ni,j(w) < 3. (5-2)
j=0 i=1

The crucial observation is that w can have at most two neighbors in C, as otherwise we would —3
find a copy of T3. Therefore,

3 

^2n3,j(w) < 1
j=0

and
3

lS(n2 ,j(w) + n3 j(w)) = d+(w) + d-(w) < 2.
j=0

In particular, if (5.2) is an equality, then w e A3(Dj) for some j e {0,1,2, 3}, and the claim 
follows. □

From the claim above we immediately obtain that the maximum value of (5.1), i.e. the maxi
mum number of 4-cycles in G, is at most 

n í 1 A 3 z n \ 44 (123"J = (4) ,

which finishes the proof of Claim 5.10. □
Case l = 6
Since G does not contain a copy of any homomorphic image of C^, it is in part icular C3-free. 

Therefore, it is enough to prove the following.
Claim 5.11. For every n > 1, we have exo(n, (3, {(3, C6}) < (n/4)4.

The outline of the proof is the same as of the proof of Claim 5.9, with the following changes. 
First, we change the definition of a good sequence — if v0v1v2v3 is a directed 4-cycle, then by 
a good sequence we mean a sequence D = (zi)3=^, where z0 = v0, z1 = v2, z2 = vi, and z3 = v3, 
i.e. v1 and v2 ^e in the reversed order. Therefore, the sets Ai(D) shall be defined as follows:

Ao(D) = V (G),
A1(D) = {v E V(G) : dG(v,zo) = 2 and dG(zo,v) = 2},
A2(D)= N +(zo) n N-(zi),
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1

2

3

4

5

6

7

8

9

10

11

12

13

As(D)= N-(zo) n N +(zj).

Note that z1 e A].(D), since each copy of C4 in G must be induced.
We also need to reprove Claim 5.10. Recall that ni,j = |Ai(Dj)| 52veV(G) ni,j(w). It is

enough to show that for each w e V(G), we have

3 3

ni,j(w) < 3. (5-3)
j = 0 i=1

Assume that w e A1(Di) and w e A1(Di/) for two different i,i' e {0,1, 2, 3} If 2 | i — i', then 
we would find a copy of a homomorphic image of C6, which must contain a copy of C6 or —3, 
a contradiction. Hence, we may assume that i' = i +1 (mod 4). But now, if w e A2(Dm) or 
w e A3(Dm) for any m e {0,1,2, 3}, then we would find a copy of C3 in G. Therefore, the 
left-hand side of (5.3) for such w is not greater than 2.

Moreover, if w e A2(Di) = A3(Di+2) for any i e {0,1, 2, 3}, then w e A1(Di) as well; in 
particular, this is possible only for at most one value of i. This implies that the left-hand side of 
(5.3) for such w is not greater than 3, which proves Claim 5.11, and as a consequence finishes the 
proof of Theorem 5.6. □

For k = 5 exo(n, C5, C3) = 5J2n5 + o(n5)
and it is asymptotically maximized by the blow-ups —4 © —n/4. The proof of the upper bound can 
be obtained via flag algebra, method by running the following code using Flagmatic.
from flagmatic.all import *
problem = OrientedGraphProblem(5, forbid = "3 : 122331", dens ity = ["5:1223344551 "

5 : 122334455113" , "5:12233445511324"] , types=["3:12","3:1223","3:122313"]) 
problem.set.extremal.construetion(field=QQ, target_bound=15/64) 
problem.add.sharp.graphs(149,164,168,188,193,265,267,285,312,316)
# type 3:12
problem.add.zero.eigenvectors(0,matrix(QQ ,

[(0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0),
(0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0),
(0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
(0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)]))

# type 3:1223
problem.add.zero.eigenvectors(1,matrix(QQ ,

[(0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0),
(0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0)]))

# type 3:121323
problem.add.zero.eigenvectors(2,matrix(QQ ,

[(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0),
(0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0),
(0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0),
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0)]))

problem.solve.sdp() 
problem.make.exact() 
P.write.certif icate("exC5C3.cert")

Let us determine exo(n, —5, —e) for f > 6. The following observation from Number Theory 
would be useful in our considerations.
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Observation 5.12 (Frobenius Coin Problem [67]). For two relatively prime integers k, m > 1, the 
largest integer which cannot be expressed, as ak + bm, where a, b > 0 are non-negative integers, is 
equal to km — k — m.

Proof of Theorem 5.7. Let G be any C^-free oriented graph on n vertices for some l > 6. By
Lemma 2.6, we may remove from G all homomorphic images of —l by removing at most o(n2) 
arcs, hence by removing at most o(n5) copies of C5. We may also assume that each arc in G is 
contained in some copy of C5.

Suppose that G contains a copy of —3. Then, since each ^c is contained in a copy of —5, there 
exists a vertex which is contained in a copy of C5, C6, and Cg. In particular, if l = 5a1 + 6a2 + 9a3 
for some non-negative integers au, a2, and a3, then G does not contain a copy of T3. With the 
help of Observation 5.12, it is easy to verify that only l e {7, 8,13} are not of this form. Consider 
the following cases.

Case l > 6 l e {7,8,13}
We already know that G is T3-free. Since l = 5a1 + 6a2 + 9a3 = 5a1 + 3(2a2 + 3a3), we 

conclude that G is C3-free well. In p^ticular, the underlying graph of G is C3-free, hence the 
number of copies of C5 in G is at most ex(n, C5,C3). The latter is known to be maximized in 
a balanced blow-up of C5 [60]. Si nee —5 0 In/5 is Q-free, we have exo(n, —5,—«) = (n/5)5 + o(n5).

Case l e {7,8,13}
Introduce the following equivalence relation in V(G) — vertices v and w are in the same 

equivalence class if and only if N +(v) = N +(w) and N_(v) = N_(w). It is easy to see that there 
is no copy of C5 that would contrnn two vertices from the same equivalence class. Therefore, if [v] 
and [w] are t wo equivalence classes sncli that there exists no copy of C5 containing both v and w, 
then it is possible to remove all vertices from one equivalence class and add the same number of 
vertices to the other equivalence class without decreasing the number of copies of C5 in G. Since 
this operation decreases the number of equivalence classes, we may assume that G is connected 
and for every two equivalence classes [v] and [w] there exists a copy of —5 in G that contains both 
v and w.

Let R be an oriented graph which vertices rn-e the equivalence cl asses; two vertices [v], [w] e 
V(R) are joined by an arc if and only if vw e E(G).

For m > 4, let Qm denote an oriented graph obtained from Cm by reversing a single arc. Since 
every arc in G is contained in a copy of C5, we conclude that G and R are Q4-free i fl = 7, and 
are Q5-free if l e {8,13}.

Claim 5.13. For every vertex in V(R), its out-neighborhood and in-neighborhood in R are tour
naments.

Proof. Let us present the argument for the out-neighborhood, as the same reasoning works for the 
in-neighborhood as well. By contradiction, assume there exist [u], [v], [w] e V (R) such th at v and 
w are non-adjacent and uv,uw e E(G). Since there exists a copy of C5 in G containing both v 
and w, there exist directed paths of length 2 and 3 joining v and w. Therefore, we can find copies 
of homomorphic images of Q4 and Q5 in G, and the claim follows. □

Let C = v1... vt be a directed in G for some t > 5, which corresponds to a directed
in R. Assume that w is adjacent to C and does not belong to any equivalence class 

[v.j]. We claim that in this case, C can be extended to a directed (t + 1)-cycle. Indeed, assume 
that v1w e E(G). (If wv1 e E(G), we can argue by a symmetric argument.) Then, by Claim 
5.13, w and v2 are adjacent. If wv2 e E(G), then we are done. Otherwise, v2w e E(G) and 
we can successively repeat the same argument. Therefore, either we find some i e [t] such that 
viw,wvi+1 e E(G), or viw e E(G) for every i e [t]. But the second possibility cannot happen, 
since G would contain a copy of Q4 and Q5.

Start with a directed 5-cycle and extend it to the largest possible directed cycle C using the 
argument above. If l = 7, then the length t of C is equal to either 5 or 6.
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• If t = 5, then it is e^y to see that C must be induced, since every arc of G must be contained 
in a copy of —5.

• If t = 6 and C = v1... v6, then the only possible diagonals in C are of the form vivi+2. 
Indeed, any arc of the form vi v»+3 creates a copy of Q4, and any arc of the form vivi+4 forces 
vi+i and vi+4 to be joined by an arc, which we already excluded. One may verify that there 
are two possible edge-maximal arrangements, G1 and G2, which are illustrated in Figure 5.1.

Figure 5.1: Oriented graphs used in the proof of Theorem 5.7.

As a consequence, G is a blow-up of C5, G15 or G2, but is straightforward to check that it is 
optimal to consider a blow-up of G1 or G2. More specifically, if we substitute Ini for v» in G15 
then one should put n» = n/5 for i e {1, 6} and n» = 3n/20 for 2 < i < 5 and if we substitute Ini 
by v» in G2, then one should put n» = n/5 for i e {1,4} and n» = 3n/20 for i e {2, 3, 5, 6}. One 
may compute that such blow-ups contain + o(n5) copies of —5.

We are left with the case I e {8,13}. Then, the length t of C is equal to either 5 6. or 7. 
Recall that G is C3-free and C4-free, hence each copy of C5 in G is induced.

• If t = 5, then again C must be induced.

• If t = 6 and C = v1... v6, then the only possible diagonals in C are of the form v».^. 
Moreover, C can have at most two such diagonals. Suppose that v2v4 e E(G) and v1v3 e 
E(G). Then, since the arc v3v4 is contained in some copy of C5 and this copy must also 
contain the arc v2v3, there must exist a directed path of length 3 from v4 to v2. But this 
creates a copy of —4, a contradiction.

• If t = 7 and C = v1 ... v7, then the only possible diagonals in C arc' of the form v^^ or 
v»^. If v1v4 e E(G), then also v1v3,v2v4 e E(G). Moreover, since v2v4 is contained in 
a copy of —5 and this copy must also contain arcs v4v5 and v5v6, we must have v7v2 e E(G). 
Analogously, by considering the arc v^, we conclude that v3v5 e E(G). At this moment, 
introducing any more diagonals would result in creating a copy of C3 or C4. On the other 
hand, the arc v1v2 is not contained in any copy of C5.

Therefore, C can have only diagonals of the form «»«»+2, and it cannot have all diagonals 
of this form. Suppose that v2v4 e E(G) and v1v3 e E(G). Then, since the arc v3v4 is 
contained in some copy of C5 and this copy must also contain the arc v2v3, there must exist 
a directed path of length 3 from v4 to v2. But this creates a copy of C4, a contradiction.

It follows that C is a blow-up of C5, hence G contains at most (n/5)5 + o(n5) copies of C5, which 
finishes the proof. □

Finally, we prove that if k > 7 is odd or I is even, then for I sufficiently large, exo(n, Ck, C7) is 
asymptotically maximized in a blow-up of Cd for a proper choice of d.
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Proof of Theorem 5.f. Recall that k > 6 and I > 2k2 — 4k + 1 is not divisible by k, and d > 1 is 
defined as the smallest divisor of k which does not divide I. We also assume that k is odd or I is 
even, which in particular implies that d > 2.

Let G be any C^-free oriented graph on n vertices. By Lemma 2.6, we may remove from G 
all homomorphic images of Cl by removing at most o(n2) arcs, hence by removing at most o(nk) 
copies of Ck. We may also assume that each vertex and each arc in G is contained in some copy 
ofCt

For any integer m > 2, let Qm denote the graph obtained from Cm by reversing a single arc. 

Claim 5.14. For any 3 < m < d + 1, G is Qm-free.

Proof. If G contains a copy of Qm, then it also contrnn a copy of a homomorphic image of Ck+m_2, 
which implies the existence of homomorphic images of directed cycles of length ak + b(k + m — 2) 
for any integers a, b > 0. Therefore, it is enough to show that I = ak + b(k + m — 2) for some 
integers a, b > 0.

Let s denote the greatest common divisor of m — 2 and k. If s does not divide I, then s e {1,2}, 
as otherwise we would get a contradiction with the definition of d. But s = 2, because we assumed 
that 2 ] k or 2 | I. Therefore, we have s = 1. Since I > 2k2 — 4k + 1, by Observation 5.12, I can 
be expressed as ak + b(k + m — 2) for some integers a, b > 0.

On the other hand, if s divides I, then l/s can be expressed as ak/s + b(k + m — 2)/s for some 
integers a, b > 0, hence again l = ak + b(k + m — 2). □

The rest of the proof is based on a method developed by Kral’, Norin, and Volec [59], which 
we used already in proofs of Theorem 5.6 and 5.7.

For any directed k-cycle v0 ... vk-1 contained in G, by a good, sequence we mean a sequence 
D = (Vi)k=0 •

For a fixed good sequence D, we define the following sets:

Ao(D) = V (G),
Ai(D) = N+(vi-:1) for 1 < i < k — 2,

Ak-i(D) = N +(vk-2) n N-(vo).

We then define the weight w(D) of a good sequence D as 

k-1
w(D)= n |Ai(D)|-1

i=0

k— 1
= n niA.(D)r‘

k-1

i=1

By symmetry, define

Bo(D) =
Bi(D) =

Bk-1(D) =

V (G),
N-(vk-i) for 1 < i < k — 2,
N +(vk-1) n N-(V1)

and
k-1

w(D) = n |Bi(D)|-1
i=0

k— 1
= n niB-tDir1

k-1

i=1

For a sequence D = (vi)k_01, let Dj = (vj+1, vj+2,..., vj+k_i), where the indices are considered 
modulo k.

If we prove that
(2 E(w(Dj)+ W(D)))k-1 -1

< M
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for some number M, then ^Yj=1(w(Dj) + w(D)) > M U Thus, by summing over all directed 
k-cycles and using the fact that the sum of the weights of all good sequences is at most one, we 
conclude that the total number of copies of Ck in G is bounded from above by M.

Put ni,j = IAi(Dj) | and ni,j = \Bi(Dj)|. Since

1 k-1 \ 1 /k-1

2 E(w(Dj)+ w(Di) I = 2n (E
2j=o / \j=o

k-1
" -1 
__ -
i=1

(n n-j+n■
\«=1

-1

the maximum possible value of

2n (
k-1 /k-1 k-1 \ \

z nn-+n n-j1) ) 
j=0 \i=1 i=1 / j

(5-4)

is an upper bound on the number of copies of Ck in G.
Using the inequality between harmonic mean and geometric mean of 4 terms and the inequality 

between geometric mean and arithmetic mean of 2k(k — 1) terms, we obtain

(
k-1 /k-1 k-1 \ \z(n n-1+n E ) s n (

k-1k-1

n n ni,j n 
j = 0 i=1

1
2k

Claim 5.15. We have

I 2k(k - 1)

k-1k-1

EE(ni,j+)
j = 0 i=1

k-1

k-1k-1EE (ni,j + ni,j ) — 2k(k — 1)n/d. 
j=0 i=1

Proof. For any w e V(G), put ni,j(w) = 1 if w e Ai(Dj), and ni,j(w) = 0 otherwise; similarly, 
ni,j(w) = 1 if w e Bi(Dj), and ni,j(w) = 0 otherwise. Then,

k-1k-1 k-1k-1

Y Y+ni,j E Y Y(w)+ni,j(w)).
j=0 i=1 wEV(G) i=1 j=0

Observe that w can have at most 2 neighbors among d consecutive vertices in D, as otherwise G 
would contain a copy of Qm for som e 3 < m < d + 1. Thereto  re, w has at m ost 2k/d neighbors 
in D.

For any fixed i e [k — 1], the sum 5^=0 (ngj (w) + ni,j (w)) is equal to the number of neighbors 
of w in D, hence is at most 2k/d. Also, 'f^j 0, nk-i,j(w) is not greater than the number of in
neighbors of w in D, and ^k—0 nk-i,j(w) is not greater than the number of out-neighbors of w 
in D, hence fPj0(nk-i,j(w) + nk-1,j(w)) < 2k/d as well. By summing over all w e V(G), we get 
the desired inequality. □

From the claim above, we conclude that

M—i-(3) k-1

and exo(n, —, CdI) — n Z n \ k 1 
k \d) + o(nk ).

n< -
- k

1

□
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5.4 Concluding remarks
The assumption in Theorem 5.4 that k is odd or I is even is necessary. For instance, if we want 
to maximize the number of copies of C6 in oriented graphs without directed 3(2t + 1)-cycles for 
large enough t, then it seems optimal to consider a random orientation of a complete balanced 
bipartite graph. On the other hand, if 4 | k and 2 ] I for sufficiently large I, then one should 
instead consider a balanced blow-up of C4. We state these observations as a conjecture.

Conjecture 5.16. Let k > 4 be divisible by 2 and I be not divisible by 2. For sufficiently large I, 
if 4 | kffihen exo(n,—k,—) = n • (n)k 1 + o(nk). Otherwise, exo(n,—k,—) = n • (n)k 1 + o(nk).

It seems that if I < k, then the extremal constructions are more varied. For instance, very 
interesting is the case of exo(n, C5, C4). One may check that the blow-up of C7(3) (see Defini
tion 4.18) contains more copies of C5 than the iterated blow-up of C5 on the same number of 
vertices. We conjecture that one cannot do essentially better.

Conjecture 5.17. We have exo(n, C5, —4) = 2^01 + o(n5).



Chapter 6

Inducibility of graphs

The results in this chapter are based on joint work with Łukasz Bożyk and Radosław Żak, and 
are currently being prepared for publication. My main contribution is developing the computer 
search algorithm for extremal constructions, implementing it, and using it to find the constructions 
described in Section 6.3. The whole content of this chapter was written by me.

6.1 Introduction
Fix a graph H on k vertices. For a graph G, let N(H, G) denote the number of induced copies 
of H in G. Define

i(H)= lim max{N(H,G) : |V(G)| = n}
<n) '

We call i(H) the inducibility of a graph H. We have i(H) = 1 for H being a complete graph or an 
empty graph, but in most of the remaining cases the problem of determining i(H) is open. The 
concept of inducibility was introduced in 1975 by Pippenger and Golumbic [68], who observed 
that

,. N (H,H°n) k!
i( ) - n^O (kn) - kk — k (6-1)

for any graph H on k vertices, and conjectured the following:

Conjecture 6.1 (Pippenger, Golumbic [68]). If H is a cycle of length k > 5 then i(H) = kkk!k.

Brown and Sidorenko proved that the inducibility of any complete bipartite graph is realized 
by complete bipartite graphs.

Theorem 6.2 (Brown, Sidorenko [18]). For any 1 < s < t,

i(Ks t) = ( + ) max (xs(1 — x)t + xt(1 — x)s) . ’ \ t J xe[0,i]

They also showed that the inducibility of complete multipartite graphs is realized by complete 
multipartite graphs, possibly with a different number of parts. This result was improved by 
Bollobas et al. Below, by Tr(n), we mean a Turan graph, i.e. a graph on n vertices which is 
a balanced blow-up of Kr.

Theorem 6.3 (Bollobâs et al. [9]).

• For any t > 2 and n > 1, T3(n) is the only graph on n vertices that maximizes the number 
of induced copies of K3 © It.

41
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• If r > 4 and t > 1 + logr, then Tr(n) is the unique extremal graph for i(Kr © It). If 
t < log(r + 1) and n is large enough, then Tr(n) is not extremal for i(Kr © It).

Regarding Conjecture 6.1, Balogh et al. [5] confirmed it for k = 5. Pippenger and Golumbic 
proved in their original paper a general bound on i(Ck) for k > 5 within a multiplicative factor of 
2e. This was recently improved to 128e/81 by Hefetz and Tyomkin [50] and to 2 by Kral’, Norin, 
and Volec [59]. Nevertheless, Conjecture 6.1 remains open for k > 5.

There are also results for more general classes of graphs. Hatami, Hirst, and Norine [48] proved 
that for any graph H there exists k0 such that i(H©Ik) is realized by a sequence of (not necessarily 
balanced) blow-ups of H if k > k0. Later, Yuster showed that (6.1) is almost an inequality for 
almost every graph H in the following sense.

Theorem 6.4 (Yuster [78]). For any k > 1, let G(k, 1/2) be a random graph on k constructed by 
joining every pair of vertices with an edge independently at random with probability 1/2. Then,

M p (i(G(k.1/2)) < \ (1 + -4/r)) = 1.

Fox, Huang, and Lee [35] claim to have proven that P (i(G(k, 1/2)) = -——3 1 although

the proof is still not published.
Let us turn attention to small graphs. It is a simple task to determine the inducibility of all 

graphs on three vertices. Hirst [51] determined the inducibility of all graphs on four vertices with 
a single exception of P4.

6.2 Bounds on inducibility of P4
How to create a large number of induced copies of P4 in a graph? The simplest idea is to consider 
iterated blow-ups of P4, which give a lower bound i(P4) > 2/21 > 0.0952. However, taking iterated 
blow-ups of C5 results in a much better bound i(P4) > 6/31 > .0.1935. Exoo [32] realized that one 
can do even better by taking iterated blow-ups of G17, a Paley graph on 17 vertices, which gives 
i(P4) > 60/307 > 0.1954. The best known construction is due to Evan-Zohar and Linial [31], who 
showed that a sequence K4 © (K3 © K3)®n implies i(P4) > 1173/5824 > 0.201407.

For the upper bound, Exoo [32] proved that i(P4) < 1/3, which was later improved by using 
the flag algebra method to i(P4) < 0.2064 by Hirst [51] and to i(P4) < 0.204513 by Vaughan [77].

In conclusion, we only know that 0.201407 < i(P4) < 0.204513 and it is not clear which of 
these bounds is closer to the truth. We shall propose a new construction which improves the lower 
bound.

6.3 The construction
We shall construct a graph G32 on 32 vertices with 8800 induced copies of P4. A straightforward 
calculation shows that iterated blow-ups of G would imply the bound i(P4) > 6600/32767 > 
0.201422.

Let G be a hypercub e on 24 = 16 vertices with vert ex set V (G) = Z^ which we shall also treat 
as a vector space, and with edges between the vertices which differ on exactly one coordinate. 
Take two copies G1 and G2 of a square of G. Define an automorphism f : Z2 3 Z4 of vector 
spaces by putting

f (0,0, 0,1) = (0,0, 0,1), f (0,0,1, 0) = (1,0,1, 0),
f (0,1, 0, 0) = (0,1,1,1), f (1,0, 0, 0) = (1,1,1, 0).

Define G32 as a disjoint uni on of G1 and G2 with the following additional e dges — if v e G4, then 
its neighborhood in G2 is equal to {f (v) + w : w e A}, where

A = {(0,0,0,0), (0,0,0,1), (0,1,0,1), (0,1,1,1), (1,0, 0, 0), (1, 0,1,1)}.
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Graph G32 is shown in Figure 6.1. One can verify by writing a computer program that G32 
has indeed 8800 induced copies of P4.

Figure 6.1: Graph G32, which iterated blow-ups imply the new lower bound on i(P4). The actual 
edges between hypercubes are given by the function f.

6.4 Comments and remarks
We arc fairly convinced that taking iterated blow-ups is not the most effective way of constructing 
large graphs with many induced copies of P4. This can be observed by searching for extremal 
graphs on a relatively small number n of vertices. It seems that iterated blow-ups of C5 are not 
extremal for any n > 17 For instance, for n = 17, the best subgraph of an iterated blow-up of C5 
has only 506 induced copies of P4, while the Paley graph on 17 vertices has 680 of them. There 
exists a graph on 18 vertices, which is a particular Cayley graph of a direct product S3 x Z3, 
whose iterated blow-ups imply the bound i(P4) > 1152/5831 > 0.1975. The smallest graph we 
found whose iterated blow-ups imply i(P4) > 0.2 lias 21 vertices and is not a Cayley graph, but 
is self-complementary. Finally, graph G32 is neither self-complementary nor a Cayley graph, but 
still possesses a quite large number of symmetries, since its automorphism group is of order 320.

Based on this evidence, one may reach the conclusion that the more vertices we consider, the 
better constructions may be involved. This can also explain the large gap between the lower and 
the upper bound on i(P4), since flag algebras consider only densities of very small graphs (the 
number of vertices almost never exceeds 10 in „real-life” applications) because of the computational 
complexity.

Since we found our constructions by the computer program, we shall also outline the algorithm 
which we used in the computer search. The idea is to start from a random graph on a fixed 
number of vertices. Then, apply the following greedy saturation procedure — as long as removing 
or adding a single edge from the graph results in increasing the number of induced copies of P4, 
remove or add this edge. If the resulting graph, denoted by G, is extremal, terminate. Otherwise, 
repeatedly apply the following procedure. First, randomly pertúrbate a small fraction of the edges 
of G. Next, apply the saturation procedure and let G' denote the obtained graph. If G' has more 
induced copies of P4 than G, put G := G'.

The random perturbing of the edges is necessary in order to escape from local maxima, which 
the algorithm encounters rather frequently. Also, we usually choose a random regular graph as 
the initial graph, since the graphs with a large number of induced copies of P4 seem to be regular 
or almost regular as well.
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Chapter 7

Inducibility of oriented graphs

The results in this chapter are based on joint work with Łukasz Bożyk and Andrzej Grzesik, and 
are published in the article Ł. Bożyk, A. Grzesik, and B. Kielak: On the inducibility of oriented 
graphs on four vertices, Discrete Math. 345(7) (2022), 112874. My main contribution is the proof 
of the upper bound for Graph 24. I also contributed to finding other constructions presented in 
Section 7.3. I rewrote the introduction and adjusted the content of Section 7.2 in comparison to 
the respective sections in [14]. Section 7.3 is the respective section from [14] with no substantial 
changes.

7.1 Introduction
The concept of inducibility, discussed in Chapter 6 for undirected graphs, can be also introduced 
in the setting of oriented graphs.

Fix an oriented graph H on k vertices. For an oriented graph G, let N(H, G) denote the 
number of induced copies of H in G. Define

i(H) = lim max{N(G)|= n} .
( ) ™ (k)

We call i(H) the inducibility of an oriented graph H. Even though we use the same notation as 
in the undirected case, it should not lead to any confusion.

In general, little is known about the inducibility of oriented graphs. Huang determined the 
inducibility of directed stars and of complete bipartite digraphs.

Theorem 7.1 (Huang [54]).

• For every k > 3,

i(Sk ) = max
0<x<1

kx(1 — x)k 1
1 — xk

• For integers 2 < s < t,

i(Ks,t) =
(’+o —) 7-M ‘

s + tj \s + tj ’

which is achieved by the balanced blow-up K n,-n of Ks,t.

Recently, Hu et al. [53] determined the inducibility of all other orientations of stars on at 
least 7 vertices. There is also an analogue of Conjecture 6.1 for oriented graphs:

Conjecture 7.2. If H is a directed cycle of length k > 4 then i(H) = kftf k.
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The conjectured value is achieved in the sequence of iterated blow-ups of a directed k-cycle. 
The case k = 4 was proved by Hu et al. [52], who also determined the inducibility of all other 
orientations of C4. Note that the case k = 5 follows from the result on undirected cycles [5]. Choi, 
Lidicky, and Pfender [20] made a similar conjecture that the inducibility of a directed path on 
k — 1 vertices is ^so achieved in the sequence of iterated blow-ups of a directed k-cycle.

The inducibility of all oriented graphs on 3 vertices is known. For a directed triangle C3 it is 
1/4 and is achieved by a sequence of any regular tournaments. The inducibility of a graph with 
one arc is 3/4, since it is the same as the inducibility of the undirected complement of K1,2 solved 
in [68], and is attained by a sequence of disjoint unions of two arbitrary tournaments of equal 
size. The inducibility of a directed star —3 was determined by Huang to be 2V3 — 3 (Theorem 7.1) 
and is achieved by an iterative construction. The case of a directed path P3 was announced to be 
solved by Hladky, Kral’ and Norin [20] — the inducibility is equal to 2/5 and is achieved in the 
sequence of iterated blow-ups of a directed 4-cycle.

We shall consider the inducibility of all oriented graphs on four vertices. Up to isomorphism, 
there are 42 such graphs. Since i(H) = i(H), where is the graph obtained from H by reversing 
all arcs, the number of non-isomorphic cases to consider can be reduced to 30.

In Section 7.3 we present upper bounds and constructions providing lower bounds for all 
oriented graph on four vertices. The results for the directed star [54], all 4-vertex tournaments [19], 
and all orientations of C4 [52] were known before. The results for some other cases follow from 
the results on the inducibility of undirected graphs [31]. In the remaining cases, the upper bounds 
were obtained mostly using Flagmatic. In several cases, the presented constructions give lower 
bounds that are matching the upper bounds, while in the remaining ones, when the construction 
is complex, the lower bounds differ by at most 0.004 in one case, and by at most 0.001 in all the 
other cases. This indicates that the constructions might be optimal and the applied flag algebras 
computations were not sufficient to obtain the matching upper bounds. All of the results are 
summarized in Table 7.1. Whenever the constant is irrational, it is defined in the appropriate 
subsection of Section 7.3. Description of the used notation and explanations of the pictograms 
applied to illustrate the constructions are contained in Section 7.2.

It is worth mentioning that the obtained results indicate the structure of constructions giving 
the inducibility to be far richer than the intuition suggests. Yuster [78] and independently Fox, 
Huang, and Lee [35] proved that for almost all graphs H, the inducibility is attained by the iterated 
blow-ups of H. For small graphs the situation is different. Out of 28 non-trivial non-isomorphic 
graphs considered here, only 2 of them have this property, whereas such constructions as those in 
Subsections 7.3.4, 7.3.20, or 7.3.23 show that the inducibility can be attained by very sophisticated 
and complex structures.

7.2 Preliminaries
We shall introduce the following notation in addition to the one defined in Chapter 2.

For any a e [0,1 ], define the circular graph S1 (a) as the oriented graph with vertex set [0,1) 
and arcs from x to x + a (mod 1) for each x e [0,1) and each a e [0, a). Let Treg denote any 
regular tournament on n vertices. For an undirected graph G. a random oriented graph Grand is 
obtained from G by orienting every edge of G independently at random. If G and H are oriented 
graphs, we write G H to denote a random oriented graph constructed from G LI H by joining 
each vertex of G with each vertex of H by an arc independently at random with probability p. 
For p = 1, we just write G H, which coincides with the notation introduced in Chapter 2.

While depicting constructions corresponding to obtained lower bounds, we use the following 
conventions. First of all, the illustrations show the limit structure of each construction instead of 
the finite graphs forming a sequence giving the lower bound. This allows us to see the structure 
of this sequence without caring about getting integer sizes of particular clusters. Each cluster is 
assigned a real number from the interval (0,1) which corresponds to the fraction of vertices present 
in that cluster in the limit (in a corresponding n-vertex graph, a cluster of size a is assumed to
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Tabic 7.1: Summary of bounds on the inducibility of graphs on four vertices.

Id Upper bound
Lower bound

Value Approximation Construction

1
• •
• • 1 = 1 1 In

2
• •
• >• 72/125 = 72/125 0.576 I5 © —n

3
• >•
• >• 3/8 = 3/8 0.375 -n U -n

4 l: l: « 0.235046 > C4 0.234309 G4

5 u « 0.204123 > 64/315 0.203175 -4°n u -4°n

6 n « 0.193552 > 6/31 0.193548 -5°n

7 n n « 0.105867 > C7 0.102124 G7

8 n 81/512 = 81/512 0.158203 I 3/4 I ±n ±n

9 k: C9 = C9 0.423570 G9

10 u: 81/400 = 81/400 0.2025 G10

11 b: 1/8 = 1/8 0.125 T reg 1 1 T reg-‘-n u n
12 b: 1/2 = 1/2 0.5 -n U -n

13 □ 2/21 = 2/21 0.095238 -4°n

14 □ 3/16 = 3/16 0.1875 K rand Kn,n
15 □ C15 = C15 0.189000 G15

16 □ 3/8 = 3/8 0.375 K*21n,n

17 b: b: « 0.095640 > 2/21 0.095238 H ©n

18 b: b: « 0.189030 > C18 0.189000 G18

19 b: b: « 0.317681 > C19 0.317678 G19

20 b: b: « 0.119760 > C20 0.119537 G20

21 C21 = C21 0.227173 s1( )
22 « 0.244055 > c22 0.244053 G22

23 b! m « 0.177784 > C23 0.177630 G23

24 b ¡a 3/8 = 3/8 0.375 Tn In

25 4/9 = 4/9 0.444444 © In

26 « 0.113205 > C26 0.112567 G26

27 « 0.148148 > 4/27 0.148148 S 1(4/9)

28 C28 = C28 0.157501 G28

29 1/2 = 1/2 0.5 S1(1/2)

30 1 = 1 1 f>T n



48 CHAPTER 7. INDUCIBILITY OF ORIENTED GRAPHS

have roughly an vertices). If no cluster sizes occur, all clusters in the picture are meant to have 
equal sizes. Every cluster forming an independent set is depicted as a white (empty) circle, while 
a cluster forming an arbitrary tournament is depicted with a gray (shaded) circle. When some other 
structure appears inside the cluster, then there is a letter indicating the structure. In particular, 
T for the transitive tournament and R for the random tournament. Iterated constructions arc 
marked by a dot inside the circle — this means that the cluster consists of a copy of the entire 
construction. We also provide a special pictogram for a circular graph Sx(a). All the above 
pictograms arc summarized in Figure 7.1.

Figure 7.1: (a) Empty graph, (b) Arbitrary tournament, (c) Transitive tournament, (d) Random 
tournament, (e) Iterative structure, (f) Cluster with structure S. (g) Circular graph with param
eter a.

7.3 Graphs
In the following subsections, for each oriented graph on four vertices we present the proven upper 
and lower bound on its inducibility and provide schematic picture and description of a construction 
giving the lower bound. If a pair H, H- is considered, only a construction for the graph H is 
presented; by reversing arcs, one may obtain an analogous construction for the graph H—

Each value of the upper bound which is not preceded with the approximation symbol («) 
is proven exactly and meets the lower bound. Whenever we use Flagmatic, we indicate on how 
many vertices it is performed. Unless it is possible to make some reduction by forbidding certain 
structures in the extremal construction, the computations arc performed using graphs on at most 
six vertices. It is possible to increase this number, which will result in slight improvement of the 
upper bounds, but will cause much longer running time of the program.

In almost all cases with sharp bounds, the standard application of the flag algebras semidef- 
initc method is insufficient due to rounding errors made in the rationalization process. In order 
to overcome this, one needs to provide additional eigenvectors for the eigenvalue zero of the nu
merically obtained semidefinite matrix, which arc not implied by the extremal construction. Such 
eigenvectors were found using the method described in the appendix of [6] and in Section 2.4.2 
of [4]. For each calculation, we published the applied Flagmatic code with all commands and added 
eigenvectors, as well as a certificate useful for verification of the obtained bound. Explanation how 
to understand the codes is written in Section 2.5.6 of Chapter 2. All the codes and certificates arc 
available at https://arxiv.org/abs/2010.11664.

We use for two graphs the following version of Lemma. 2.1 from [54], which can be proved using 
essentially the same method.

Lemma 7.3. Let H be an oriented graph with the following property — for every v, w e V(H) 
not joined by an arc, N +(v) = N +(w) and N-(v) = N- (w). Then, for any n e N, there 
exists an oriented graph G on n vertices satisfying the same property and such that N(H, G) = 
max{N(H, G') : |V(G')| = n}.

7.3.1 Graph 1
• •

Graph: , ,

Upper bound: 1

https://arxiv.org/abs/2010.11664
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Lower bound: 1

Construction:

Empty graph.

7.3.2 Graph 2
• •

Graph: , ,,

Upper bound: 72/125
As every connected component of this graph is a transitive tournament, the inducibility of this 

graph is equal to the inducibility of the undirected graph K2 LI I2 (an edge on four vertices), which 
was explicitly determined in [31].

Lower bound: 72/125

Construction:

Balanced union of arbitrary five tournaments.

7.3.3 Graph 3
• >•

Graph: , ,,

Upper bound: 3/8
As every connected component of this graph is a transitive tournament, the inducibility of 

this graph is equal to the inducibility of the undirected graph K2 LI K2, which is equal to the 
inducibility of its complement K2,2, whose value is known [11, 68].

Lower bound: 3/8

Construction:

Balanced union of arbitrary two tournaments.

7.3.4 Graph 4
Graph: u u

Upper bound (by Flagmatic on 6 vertices): « 0.235046

Lower bound: « 0.234309 obtained by cluster size optimization, assuming that xi = yi for all 
i > 1 xi = yi for all i > 0 x1 = xi = 0 for i > 6, and (xi)i>5 is a geometric series.

Construction:
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x0+ y0 + E xi+ yi+ xi+ yi = 1
i>i

Construction G4 is the following. Split vertices into parts Xi and Yi, i > 0. Consider also partitions 
Xo Ui=0 Xi and Yo = |Ji=0 YU'. Add all arcs from Xj to Xi and from Yj to Yi for 0 < i < j.
Finally, add all arcs from Xi to Uj=i Yi' and from Yi to Uj=i Xi for i > 1.

7.3.5 Graph 5
Graph: l:

Upper bound (by Flagmatic on 6 vertices): « 0.204123

Lower bound: 64/315 « 0.203175

Construction:

Balanced union of two iterated blow-ups of C4.

7.3.6 Graph 6

Graph:

Upper bound (by Flagmatic on 6 vertices): « 0.193552

Lower bound: 6/31 « 0.193548

Construction:

Iterated blow-up of C5.

7.3.7 Graph 7
Graph: n n

Upper bound (by Flagmatic on 6 vertices): « 0.105867
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Lower bound: c7 « 0.102124, where

24((a + b)2c2 + 2abd(b + 2c))
c7 = a,bmE[0,i] 1 - 2a4 - 2b4 - 2c4 - d4

2a+2b+2c+d=1

and the maximum is attained at (a, b, c, d) « (0.117446, 0.159343,0.146896,0.152629).

Construction:

Construction G7 is a weighted iterated blow-up of a graph on 7 vertices. More specifically, let 
2a + 2b + 2c + d = 1 and split vertices into 7 parts — two of size a, two of size b, two of size c, and 
one of size d. Add arcs between appropriate parts to make them complete bipartite and orient 
them as shown in the picture. Finally, iterate this process inside each of the seven parts. Note 
that the direction of arcs between parts of size c is not important, hence many non-isomorphic 
examples of graphs with this bound met can be found.

7.3.8 Graph 8
Graph: *

Upper bound (by Flagmatic on 6 vertices): 81/512

Lower bound: 81/512

Construction:

Union of two balanced empty graphs with random arcs from the first to the second with proba
bility

7.3.9 Graph 9

Graph: k u:
Upper bound: c9, where 

c9
32(1 - 2x)x3max , ,.

x6[0,1 ] 1 - (1 - 2x)4
= 4-

6
^-1

+6 y 72 -1

and the maximum is attained at x « 0.37346. Proved by Huang [54], also included as an example 
application of the Flagmatic software [77].

Lower bound: c9 « 0.423570

Construction:
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Split vertices into two parts, A of size x and B of size 1 — x. Then, put all possible arcs from A 
to B and iterate this process inside A.

7.3.10 Graph 10
Graph: k: k:

Upper bound (by Flagmatic on 5 vertices): 81/400

Lower bound: 81/400

Construction:

Construction G10 is the' following. Split vert ices into 5 parts — A of siz e 70. B of siz e |, C of 
size TO, D of size 4, and E of size Put all arcs from A to B, from B to C C to D, from 
D to A from C to E, and from A to E. In [53], there is also a general probabilistic construction 
for any orientation of a star.

7.3.11 Graph 11

Graph: ,

Upper bound (by Flagmatic on 5 vertices): 1/8

Lower bound: 1/8

Construction:

Balanced union of two arbitrary regular tournaments.

7.3.12 Graph 12

Graph:

Upper bound: 1/2
As every connected component of this oriented graph is a transitive tournament, the inducibility 

of this graph is equal to the inducibility of the undirected graph K3 LI Ii, which is equal to the 
inducibility of Ki,3 determined in [18].

Lower bound: 1/2

Construction:
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Balanced union of two transitive tournaments.

7.3.13 Graph 13
Graph: ^/'*

Upper bound: 2/21 proved in [52] using the flag algebra, method with additional stability argu
ments.

Lower bound: 2/21

Construction:

Iterated blow-up of C4.

7.3.14 Graph 14

Graph:

Upper bound (by Flagmatic on 5 vertices): 3/16

Lower bound: 3/16

Construction:

Balanced complete bipartite graph with randomly oriented edges. In [52], it is additionally proven 
that every extremal graph is within edit distance o(n2) from a pseudorandom orientation of a bal
anced complete bipartite graph.

7.3.15 Graph 15
Graph: J/^

Upper bound: c15 proved in [52], where 

ci5 = max
xE[0,1 ]

12x2(1 - 2x)2
1 2X

= 9 (V2 - 2) + 6 2 (V2 - 1)

and the maximum is attained at x « 0.25202. It is shown in [52] that the unique limit object 
maximizing the inducibility of □ is given by the construction presented below.

Lower bound: c15 « 0.189000
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Construction:

x 1 — 2x x
Construction G15 is the following. Split vertices into three parts, A of size x, B of size 1 — 2x, and 
C of size x. Put all possible arcs from A to B and from B to C. Iterate this process inside A and 
inside C.

7.3.16 Graph 16

Graph:

Upper bound: 3/8
It is equal to the inducibility of undirected K2,2 solved in [11, 68].

Lower bound: 3/8

Construction:

Complete balanced bipartite graph with edges oriented from the first part to the second.

7.3.17 Graph 17

Graph:

Upper bound (by Flagmatic on 6 vertices): « 0.095640

Lower bound: 2/21 « 0.095238

Construction:

Iterated blow-up of graph

7.3.18 Graph 18

Graph:

Upper bound (by Flagmatic on 6 vertices): « 0.189030

Lower bound: c18 « 0.189000, where

C18 = max
xE[0,1 ]

12x2(1 — 2x)2
1 2X

= 9 (V'2 — 2) + 6 2 (V'2 — 1}
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and is attained at x ~ 0.25202.

Construction:

x x 1 — 2x

Construction G18 is the following. Split vertices into three parts, A of size x, B of size x, and C 
of size 1 — 2x. Put all possible arcs from A to B and from B to C, put also all possible arcs inside 
C to make it an arbitrary tournament. Iterate this process inside A and inside B.

7.3.19 Graph 19

Graph:

Upper bound (by Flagmatic on 6 vertices): « 0.317681

Lower bound: c19 « 0.317678, where

C19
24(1 — 2x)x3max

xe[0,1 ] 1 — (1 — 2x)4 
3

'^2 ■
+ 3-^ 72 - 13

2 2 -

and the maximum is attained at x ~ 0.37346.

Construction:

x 1 — 2x x

Construction G19 is the following. Split vertices into three parts — A of size x, B of size x, and 
C of size 1 — 2x. Put all possible arcs from C to A from C to B and all possible arcs in parts A 
and B to niake them arbitrary tournaments. Iterate this process inside part C.

7.3.20 Graph 20

Graph:

Upper bound (by Flagmatic on 6 vertices): « 0.119760

Lower bound: c20 > 0.119537, where

c20 = max 24y(1—x4 y) (xyI1 + y(1 — x — y)l2 + (1 — x — y)2l3),
1 — x4

/•1 /»1 /»a
I1 = p(a)(1 — p(a))da, I2 = p(a)2p(b)(1 — p(b))db da,

Jo Jo Jo

na b
(1 — p(c))p(b)(1 — p(a))dc db da

Jo
and the maximum is taken over all x, y e [0,1] and functions p : [0,1] —> [0,1]. The above lower 
bound is obtained by maximizing over values of x, y e [0,1] and p being a polynomial of degree at 
most 7.

Construction:
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Construction G20 is the following. Split vertices into three parts — A of size x B of size y, and 
C of size 1 — x — y, fix also a function p : [0,1] [0,1]. Put Al possible arcs from A to B, from
C to A and inside part C to make it a transitive tournament. Treat C as a finite subset of [0,1], 
with order < on [0,1] preserving the transitive order of vertices of C. For each vertex v e C and 
w e B, put an arc from v to w independently at random with probability p(v). Finally, iterate 
this process inside part A.

7.3.21 Graph 21

Graph:

Upper bound (by Flagmatic on 5 vertices): (28 + 6V3)/169

Lower bound: (28 + 6V'3)/169 « 0.227173

Construction:

Circular graph with parameter (9 ^/3)/26.
To determine the density of in the circular graph S 1(a) with parameter a = (9 + V'3)/26, 

note that if the vertices of are denoted by v, X y z in such a way that vx xy, and yz are 
arcs, then every its embedding has the vertices in order v, x y z along the circle. Fix v on the 
circle and parameterize the remaining vertices by their oriented arc-distance from v. Since z is 
non-adjacent to v, its position must be in the interval (a, 1 — a), while x and y need to form an 
ordered pair in the interval of vertices adjacent to both v and z. Therefore, the density of JuJ in 
S 1(a) is equal to

1—a
4! i(a

2V (z — a))2 dz = 28 +W3
169/a

7.3.22 Graph 22

Graph:

Upper bound (by Flagmatic on 8 vertices): « 0.244055
By Lemma 7.3, we may assume that the oriented graphs maximizing the number of induced 

copies of have the property that the in- and out-neighborhood of non-ncighbors arc the same. 
In particular, we can consider the inducibility of in a family of graphs which have no induced 
copy of T2 LI I1 (an arc plus an isolated vertex) or P3, simplifying this way the computations in 
Flagmatic.
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Lower bound: c22 « 0.244053 , where

= 2y V 12y2 , 24qy3 7 1_________y \
C22 0<2y«L—-q<1 1 — q (1 — q)2 (1 — q)2 1 + q + q2 1 — q4 .

Construction:

ao + 2ai + 2a2 + • • • — 1
Construction consists of a sequence of clusters A® for i e Z, where each Ai is an empty graph, 
and each pair of vertices from different clusters is joined by an arc pointing to the cluster with the 
larger index. Let the cluster A® be of the size where a0 + 2a1 + 2a2 + ... — 1. Letting the 
cluster sizes decrease geometrically, i.e., a® — yq®-1 for i — 1, 2,... aid a0 — 1 — i—q, we obtain 
the desired density.

7.3.23 Graph 23

Graph:

Upper bound (by Flagmatic on 6 vertices): « 0.177784

Lower bound: c23 « 0.177630, where

c23 — max
®e[o,i]

8x(1 — x)3 + 3I5 (1 — x)4
1 — x4

4
105

m2/3 V7690 - 63 — 612/3 363 + 7690 + 42 

and the maximum is attained at x « 0.24063.

Construction:

x 1 — x
Construction G23 is the following. Split vertices into two parts — A of size x and B of size 1 — x. 
Put arcs in B to make it an iterated blow-up of C4 and all possible arcs from A to B. Iterate the 
process inside A.

7.3.24 Graph 24

Graph:

Upper bound: 3/8

Proof. Let G be a graph on n vertices maximizing the number of induced copies of H — J/J and 
introduce the following equivalence relation in V(G): v ~ w if and only if N+(v) — N+(w) and 
N-(v) — N-(w). By Lemma 7.3, since H has the property that v ~ w if and only if v and w are 
not joined by an arc, we may assume that G satisfies the same property.

Define T as the set of all vertices which belong to the equivalence classes of size one, and 
let t — |T|. Let m be the number of the remaining equivalence classes; we shall write them as 
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B1,... ,Bm, where bi = |Bi| and b1 < ... < bm Note that each induced copy of H which is 
not disjoint from T contains exactly two vertices in T (joined by an arc, which can be oriented 
in any way) and two vertices in some Bi5 with arcs oriented from T to Bi. Hence, the number 
of induced copies of H in G does not depend on the orientation of arcs between vertices in T. 
Also, by reorienting the arcs in such a way that T Bi for every i e [m], we will not decrease 
the number of induced copies of H. The following claim gives the orientation of arcs between the 
remaining pairs of equivalence classes.

Claim 7.4. We can reorient the arcs between Bi and Bj for every i < j so that Bi Bj without
decreasing the number of induced copies of H.

Proof Consider a partition IU J = [m — 1] of indices such that Bi Bm for i e I and Bm Bj 

for j e J. Let us modify the graph G by reorienting all arcs incident to Bj and Bm towards Bm 
for each j e J F.acli induced copy of H removed in this way has exactly one vertex in Bm, exactly 
two vertices in Bj for some j e J, and one more vertex which belongs neither to Bj nor Bm and 
has outgoing arcs to Bj. The number of lost copies is then equal to

bm g 0 )(t + E bi +
iGl,Bi '■ j

E
j'Gj,Bj'

(7-1)

The created copies of H contain exactly two vertices in Bm and at least one vertex in Bj for 
some j e J, therefore the number of created copies is equal to

i bm A
UJ (t E bj+ E bibj+ E bjj I. 

\ jGJ iGl,jGJ j<j'GJ /
(7-2)

Now, we can compare both values by looking at the appropriate terms in both formulas. For 
each pair j = j' e J, we have exactly one of the following two terms

bm(j bj', bm(M bj

in (7.1) containing bjbj', and exactly one term

bm
bj bj'

in (7.2). Since bm > bi for all i e [m — 1], we have

ibm\
\2j

bj bj' > bm and
ibm\
\2j

bj bj' > bm
j bj j bj

Also, for each i e I and j e J, we have at most one term containing bibj in (7.1) — it is equal 
to bm(bj)bi5 which is not greater than (^p)bibj in (7.2). Finally, for t and any index j e J, we have 
one term bmij)t in (7.1), which is again not greater than (bp)bjt in (7.2). Therefore, (7.1) is not 
greater than (7.2), i.e. the number of induced copies of H in G did not decrease after reorienting 
all arcs towards Bm.

We can repeat this argument for the subgraph of G induced by the union of T and B1,..., Bm-1 
— just note that by reorienting arcs in this subgraph, we will not decrease the number of induced 
copies of H which contain at least one vertex in Bm. By repeating this iterative procedure, we 
will eventually obtain the property that Bi Bj whenever i < j. □
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So far, we proved that the graph G has the following structure:

— = B 1 = E>2 = . . . = Bm.

We would like to show that m = 1, so th at G is just of the form T = B1. Assume that this is 
not the case, i.e. m > 2 and G is an extremal graph with bm being maximal and — for this value 
of bm — also t being maximal.

Claim 7.5. If m > 2, then t > bm.

Proof Since G is an extremal graph, introducing a single arc in B1 shall not increase the number 
of induced copies of H. Such an arc removes Q)induced copies of H and creates 52”=2 (bf) induced 
copies of H. Therefore, we have

(y * b 2)

In particular, t > bm. Moreover, if m > 2, then t > bm, since (b22) > 1. Also, if m = 2 and 
t = bm, then we can move those two vertices which we just joined by an arc to T; this way, we 
will not decrease the number of induced copies of H in G, but we will increase the size of T, 
contradicting our assumptions about the maximality of the graph G. It follows that we must have 
t > bm. □

We are ready to give an argument contradicting the maximality of G. Remove one vertex from 
T and add one' vertex to Bm. This way, we destroy the following number of induced copies of H:

m /-. \ m-1 m /? \

«-1) E ft) + E E 4 j, 
i=1 E 7 i=1 j=i+1 \ /

which can be written in the following way:

zi X m-1 z, x m-1 m-1 z, x m-1 z, x
«-»(bm- +«-1)e b + e e <j+eb. bm

' / i=1 ' ' i=1 j=i+1 ' ' i=1 ' '
(7-3)

On the other hand, we create the following number of induced copies of H:

bm +(t -
m-1 m-1 m-1

1^2 bi+ 12 12 bibj),
i=1 i=1 j=i+1 I

which can be written in the following way:

G — 1\ m—1 bibm
bm{ 2 )+</ — 1) E V

m-1 m-1 m-1m—1 m—1 m—1 , ,

+ E E bibjbm + E (* — 1) bi2m 
i=1 j=i+1 i=1

(7-4)

Since t — 1 > bm by Claim 7.5, it is straightforward to see that each summand of (7.3) is not 
greater than the appropriate summand of (7.4), and that there is at least one strictly smaller 
summand (e.g. the last one).

It follows that the graph G must be of the form T = B1. The number of induced copies of 
H in G is then equal to (2)(”-4), which is maximized for t e {[nJ, I"n!}• This gives the desired 
upper bound for the inducibility of H. □
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Lower bound: 3/8

Construction:

Full join from an arbitrary tournament to an empty graph of the same size.

7.3.25 Graph 25
Graph: ¡¿J

Upper bound: 4/9

Proof. Note that in each induced copy of ¿Z* there arc exactly two vertices for which out-degree, 
in-degree, and non-degree are equal to 1. Basing on this observation and using AM-GM inequality, 
we get the following bound on the number of induced copies of ¡¿J in any n-vertex graph G:

N(B,G) < 1 £ d+(v)d- (v)d'(v) <
vev(G)

n(n — 1)3
54

In particular,
iO < lim n(n — 1)3 n\

54 / 4
4
9.

Lower bound: 4/9

Construction:

Balanced blow-up of C3.

7.3.26 Graph 26

Graph:

Upper bound (by Flagmatic on 6 vertices): « 0.113205

Lower bound: c26 > 0.112567, where

c26 = max
24y2(1 — x — y)

1 — x4 (xli + (1 — x — y)l2),

(• 1 (• 1 ('ll
I1 = p(a)(1 — p(a))da, I2 = (1 — p(b))2p(a)(1 — p(a))db da

JO JO JO

and the maximum is taken over all x, y e [0,1] and functions p : [0,1] —> [0,1]. The above lower 
bound is obtained by maximizing over x, y e [0,1] and p being a polynomial of degree at most 7.
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Construction:

Construction G26 is the following. Split vertices into three parts — A of size x, B of size y, and 
C of size 1 — x — y, fix also a function p : [0,1] [0,1]. Put Al possible arcs from B to A, from
A to C, and inside part C to make it a transitive tournament. Treat C as a finite subset of [0,1], 
with order < on [0,1] preserving the transitive order of vertices of C. For each v e C and w e B, 
put an arc between v and w oriented independently at random, with probability p(v) from v to w 
and with probability 1 — p(v) from w to v. Finally, iterate this process inside part A.

7.3.27 Graph 27

Graph:

Upper bound (by Flagmatic on 6 vertices): « 0.148148

Lower bound: 4/27 « 0.148148

Construction:

Circular graph with parameter 4/9.
The exact value of the upper bound found by Flagmatic is equal to the

decimal expansion of which agrees with 4/27 up to the tenth decimal place. We believe it is possible 
to obtain the proof of the optimal upper bound by providing eigenvectors for the eigenvalue zero 
and solving the scmidcfinitc problem with sufficiently good precision. Unfortunately, computations 
on 6 vertices generate too large numerical errors on esdp, while computations on a solver with 
higher precision require too much computational power. Thus, we were unable to prove the optimal 
bound.

To determine the density of in the circular graph S1(4/9), note that each embedding of 
a directed triangle can be extended to an embedding of by adding any vertex non-adjaccnt to 
one of the vertices of the triangle, and the set of such vertices has measure 1/3. Moreover, each 
embedding of is counted this way exactly once.

In order to find the density of a directed triangle with arcs vx xy, and yv, we fix v on the 
circle and parameterize the remaining vertices by their oriented arc-distance from v. To create 
a directed triangle, the position of x must be in the interval (1/9,4/9), while y needs to be in the 
interval of vertices appropriately connected to v and x. Since this way we count each directed 
triangle three times, we need to divide the obtained value by 3.

Therefore, the density of in S1(4/9) is equal to

4! />4/9
Z/9

4 5 4
x +--------- dx = —

9 9 27
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7.3.28 Graph 28

Upper bound: c28 proved in [19] (Theorem 4).
Lower bound: c28 « 0.157501, where

C28 = max
®e[0,i]

x4/8 + x3(1 — x)
1 — (1 — x)4

8 — 37/3 + 35/3

8

and the maximum is attained at x « 0.85642. It is proved in [19] that the extremal construction 
for sufficiently large number of vertices is precisely the one presented below.
Construction:

x 1 — x
Construction G28 is the following. Split vertices into two parts — A of size x and B of size 1 — x. 
Let A be a random tournament and put all possible arcs from A to B. Finally, iterate the process 
inside B.

7.3.29 Graph 29

Graph:

Upper bound: 1/2

Proof. Let G be an n-vertex oriented graph with the maximum number of induced copies of
As adding an arc between two non-ncighbors may only increase the number of induced copies of 

we may assume that G is a tournament, i.e., d+(v) + d-(v) = n — 1 for every v e V(G). Note 
that 

N,G) < 2 £ N(b.,G — v), 
vev(G)

as in each induced copy of there are two ways to select vertex v in such a way that the 
remaining three vertices form an induced copy of b»- Furthermore, for every tournament H on k 
vertices, we have

2N(b.,H)+ k =3N(U,H) + N,H)= £ d+(v)d-(v) < k(k — 1)2
' 2 vev(H)

by the AM-GM inequality, and in consequence

N(k,„) < (k — W +1).

Applying this inequality for k = n — 1 and H = G — v for every v e V (G), and plugging to the 
previous estimation, we finally get

hence

) < lim

N ( ,G) <
n2(n — 1)(n — 2)

48

n2(n — 1)(n — 2)
48

/(n) 1
2.

Graph:
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An independent- proof can be found in [19].

Lower bound: 1/2

Construction:

Circular graph with parameter 1/2.

7.3.30 Graph 30

Graph:

Upper bound: 1

Lower bound: 1

Construction:

Transitive tournament.
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