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Content of the thesis

The organization of the thesis is as follows. Section 1 is devoted to the in-

troduction to noncommutative geometry together with a brief review of the most

important results in the field, chosen by the author as relevant for the rest of the

thesis. In section 2 the performed research is motivated and its results are then

collected. Each of the subsections 2.1 and 2.2 begin with a brief introduction to

the problem. Then each of the articles (or preprints) is reproduced, preceded by

an appropriate commentary containing the summary of the obtained results. Each

subsection is closed with a brief summary and discussion of possible further research

directions in the subject. Finally, in section 3 closing remarks are contained.

This thesis consists of the following articles and preprints, to which the contri-

bution of each author was equal:
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2. A. Bochniak, A. Sitarz and P. Zalecki, Spectral action and the electroweak

θ-terms for the Standard Model without fermion doubling, J. High Energ.

Phys. 12, 142 (2021), DOI: 10.1007/JHEP12(2021)142.

3. A. Bochniak and A. Sitarz, Stability of Friedmann-Lemaître-Robertson-Walker

solutions in doubled geometries, Phys. Rev. D 103, 044041 (2021), DOI:

10.1103/PhysRevD.103.044041.

4. A. Bochniak and A. Sitarz, Spectral interaction between universes, arXiv:

2201.03839.
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1 Introduction

1.1 Noncommutative geometry

Geometric structures existing behind physical theories play a crucial role in

understanding phenomena predicted by these models. The most recognizable the-

ory formulated in a purely geometric language is Einstein’s theory of gravitation

- the General Relativity [1]. The attractive idea that fundamental interactions

can be encoded by using objects of topological or geometric nature was further

extended far beyond the gravitational interactions. In particular, gauge theories

can be described in terms of connections and their curvatures defined on certain

fiber bundles [2].

1.1.1 The idea

Before making an attempt to geometrize physics one has to first answer the

question “What a geometry really is?”. The common understanding of geometric

objects as sets of points, equipped with additional structures that allow us to

decide, for example, how far are these points from each other, appears to not be

fully satisfactory. Fortunately, there is a different, but equivalent, description.

Instead of considering the set of points itself, one can concentrate on functions

defined on it. More precisely, to a locally compact Hausdorff space M one can

associate the C∗-algebra C(M) of continuous complex-valued functions on M.

The Gelfand-Naimark duality theorem [3] assures us that the topology of the space

M can be reconstructed out of the data encoded in C(M). This is the first step

to an alternative formulation of the notion of geometry, which can be further easily

generalized. Indeed, observe that the C∗-algebra C(M) is commutative, and it
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is natural to say that if we replace it with a noncommutative C∗-algebra A, it

describes noncommutative topological space.

The aforementioned duality theorem allows us to store the information about

the topology of a space, but a given topological space can be equipped with further

structures. To attempt a reformulation of this part, one has to first make use of

the Gelfand-Naimark-Segal (GNS) construction [3, 4, 5] that allows us to treat

elements of the C∗-algebra A as operators acting on certain Hilbert space H.

The possibility of rewriting topological data in terms of algebraic objects can be

further extended, and certain dictionaries can be built. In particular, open (dense)

subsets corresponds to (essential) ideals and compactification of a topological space

can be translated into the unitalization of a C∗-algebra. For other constructions,

we refer the reader to [6, 7].

The first crucial step towards introducing noncommutative analogs of differ-

ential and metric structures that one could consider on a given topological space

is to replace C∗-algebras A with their dense ∗-subalgebras A. Relaxing the C∗-

condition has many advantages as, in particular, it allows for the use of certain

differential operators. In classical differential geometry this means that instead of

the C∗- algebra C(M) we work with the ∗-algebra C∞(M) of smooth functions

on M. The requirement of smoothness has plenty of implications, and this choice

is very natural in the context of differential geometry, where smooth vector fields

(sections of certain smooth vector bundles) play an important role.

The fundamental object in differential geometry is the space of one-forms

Ω1(M), from which the whole differential calculus can be built. This set has a

natural structure of C∞(M)-bimodule, and the exterior derivative d is a deriva-

tion C∞(M) → Ω1(M), which is then extendable to Ω•(M) by requiring the
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fulfilment of the Leibniz rule. This observation motivates the definition of a non-

commutative first-order differential calculus (FODC) as a pair (Ω1(A), d), where

Ω1(A) is a bimodule over A, and d : A → Ω1(A) satisfies d(ab) = (da) ·b+a · (db),
for all a, b ∈ A. For a generic algebra A there usually exist plenty of different

FODCs. The simplest choice is the universal one with Ω1
u(A) being the kernel of

the multiplication map on A, and with the derivation du(a) = a⊗1−1⊗a, a ∈ A.

The name originates from the fact that for any derivation d on A with values in

a given A-bimodule E one can find a unique bimodule map ιd : Ω1
u(A) → E s.t.

d = ιd ◦ du.
Out of the universal FODC one can construct a differential graded algebra

(DGA) Ω•
u(A) over A, that is, an N-graded algebra with Ω0

u(A) = A, Ω1
u(A) given

by the universal FODC, and higher forms (together with the extension of du to

them) defined in a way that the graded Leibniz rule is satisfied - for details see [7]

and [6, Chapt. 8.1].

Having given representation π of A on a Hilbert space H, and an (possibly

unbounded) operator F = F ∗ on H s.t. both π(a) and [F, π(a)] are bounded for

every a ∈ A, one can show that the assignment

πF (a0da1 . . . dan) = π(a0)[F, π(a1)] . . . [F, π(an)] (1)

defines a representation πF of Ω•
u(A), as DGA, which can be used to construct yet

another DGA by diving Ω•
u(A) by its ideal kerπF + d(kerπF ), and if, moreover,

F 2 = 1, then πF defines a representation also on the resulting DGA [8].

1.1.2 Fredholm modules and spectral triples

The latter property motivates the notion of an odd (unbounded) Fredholm

module over an algebra A. It is defined as a pair (π, F ) of an (involutive) rep-
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resentation π of A on a Hilbert space H and an operator F = F ∗ acting on H
and s.t. F 2 = 1 and [F, π(a)] is a compact operator for all a ∈ A [6, Def. 8.4].

Even Fredholm modules are defined in a similar way but now we assume that

π = π0 ⊕ π1 is a representation on a Z2-graded Hilbert space and F intertwines

π0 and π1. One may also slightly relax the conditions in the above definitions and

demand only that both π(a)(F − F ∗) and π(a)(F 2 − 1) are compact. This leads

to the notion of pre-Fredholm modules. Introducing certain equivalence relation

between them (see [6, p. 400] for details) we end up with a specific homology the-

ory: the K-homology of A. Pre-Fredholm modules are the so-called K-cycles and

their suitable equivalence classes are the K-homology classes. Using the standard

Grothendieck’s prescription known from K-theory results in two abelian groups,

K0(A) for even modules, and K1(A) for odd ones.

There is yet another homology theory that can be associated to an algebra

A - the Hochschild homology HH•, defined as a homology of a chain complex

with spaces A⊗(n+1) and a specific boundary map - for details see [6, Def. 8.14]

or [9, Chapt. 5.2]. It encodes the information about the de Rham complex. More

precisely, the Hochschild-Kostant-Rosenberg-Connes theorem says that for a com-

pact manifold M, HH•(C∞(M)) is precisely the de Rham complex for M [6,

Chapt. 8.5]1. In addition to the Hochschild homology one may consider also cyclic

homology and cohomology which can be used to define certain invariants of pre-

Fredholm modules treated as representants of K-homology classes [12, 13].

The most important examples of pre-Fredholm modules can be constructed

out of unbounded self-adjoint operators D on a given Hilbert space H. More

precisely, if such D has compact resolvent and [D, π(a)] ∈ B(H), a ∈ A, then the
1See also [10] for the original proof and [11] for the classical algebraic result which was generalized by Connes.
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operator F = D(1 + D2)−
1
2 defines a pre-Fredholm module [6, p. 400],[14]. This

observation motivates the definition of a spectral triple. It is defined as a system

(A,H, D) consisting of an unital ∗-algebra A (faithfully) represented (by the use of

a representation π) on a separable Hilbert space H. D is an essentially self-adjoint

operator having compact resolvent, with its domain invariant under the action of

A, and s.t. [D, π(a)] can be extended to the element in B(H). Spectral triples

are also called unbounded K-cycles on A. From now on we identify elements of

A with their images under the representation on H, and omit the symbol of the

representation if this will not lead to any confusion.

1.1.3 Grading and reality

The above notion of a spectral triple is, however, very general and, in order to

be closer to the usual differential geometry one has to impose further conditions.

A bare spectral triple can be decorated with other operators defined on the Hilbert

space H. One of them is a self-adjoint operator γ that implements a grading on

H, i.e. γ2 = 1, anticommutes with D and commutes with the elements of A. Such

a spectral triple is called even. If such γ is not present, the spectral triple is called

odd.

On the ∗-algebra A we consider an involution, possibly different from the canon-

ical one a 7→ a∗, and we would like to implement also this structure on the Hilbert

space H. This can be achieved by choosing an antilinear isometry J on H s.t.

DJ = ϵJD, J2 = ϵ′id and Jγ = ϵ′′γJ with ϵ, ϵ′, ϵ′′ = ±1.2 The choice of (ϵ, ϵ′, ϵ′′)

corresponds to the so-called KO-dimension of the spectral triple, which a number

from Z8, and can be understood in terms of KR-cycles - see e.g. [6, Chap. 9.5].
2For an odd triple the last relation is omitted.

13



The above elements are usually supposed to satisfy certain further conditions.

For example, by analogy to the Tomita-Takesaki modular theory [15, 16], one may

demand that the operator J implements a bimodule structure on H: the left module

structure comes from the natural (left) action of A under its representation on H
via A ×H ∋ (a, ψ) 7→ aψ ∈ H, while the right module structure is implemented

by H × A ∋ (ψ, a) 7→ Ja∗J−1ψ ∈ H. Notice that this condition is equivalent to

demanding that a commutes with Jb∗J−1, for every a, b ∈ A. It is the so-called

zeroth-order condition. A spectral triple that possesses such J is called a real

spectral triple.

1.1.4 The first-order condition and Hodge property

Yet other conditions that one can impose on a given spectral triple are related

with the operator D. For example, one may require that this operator is within

a certain class. In particular, we can demand that it is a noncommutative ana-

logue of differential operator of a given order in derivatives. It turns out that the

requirement of being first-order differential operator can be translated into an al-

gebraic language by demanding that certain commutators vanish. More precisely,

the so-called first-order condition (for a real spectral triple) is the requirement that

[[D, a], Jb∗J−1] = 0, for all a, b ∈ A. This condition can be also generalized into a

situation when a triple is not decorated with a real structure J , but then we have

to separately assume the existence of a bimodule structure on the Hilbert space H,

given by two, possibly independent, left and right representations of A.

The simultaneous fulfillment of order zero and order one conditions is equiva-

lent to the requirement of existing an additional bimodule structure on H. More

precisely, let Ω1
D(A) denotes the linear span of {a[D, b] : a, b ∈ A}, that is, it is
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the space of one forms for the spectral triple, with d = [D, · ] as a derivation. The

Clifford algebra ClD(A) for a spectral triple is defined as the complex ∗-subalgebra

of B(H) generated by A and Ω1
D(A). One can show that the requirement for H

to be a ClD(A) − A-bimodule is equivalent to the fact that both order zero and

order one conditions hold [17, 18].

The situation when the spectral triple is of this type is common. As an example,

let M be a closed four-dimensional Riemannian manifold equipped with a spin

structure, and consider the ∗-algebra C∞(M) of smooth functions on M, and the

Hilbert space L2(M,S) of square-integrable spinors, being sections of the spinor

bundle S → M over M. Under the above assumptions on M, there exists a first-

order differential operator DM acting on spinors whose action, in local coordinates,

can be written as

DM = iγµ(∂µ + ωµ), (2)

where ω is the connection on S, we are using the Einstein’s summation convention,

and gamma matrices satisfy γµγν + γνγµ = 2gµνI4 with gµν being the Riemannian

metric on M and I4 the identity matrix of size four, the dimension of M. The op-

erator DM is referrred to as the Dirac operator for the manifold M. Furthermore,

since the Clifford algebra generated by gamma matrices is explicitely involved here,

we may also make use of the existing γ5 matrix and the charge conjugation opera-

tion, and represent them as operators on L2(M,S) to get natural candidates fr a

graiding γ and a real structure J , respectively. It is indeed the case, and the system

(C∞(M), L2(M,S), DM, γ, J) forms a real even spectral triple of KO-dimension

four with the order one condition satisfied. This triple is usually referred to as

the canonical spectral triple for a spin manifold M. Motivated by this example,

the operator D for a generic spectral triple is called a Dirac operator (or, by some
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authors, a Dirac-type operator).

Yet another set of conditions involving Dirac operator is motivated by the

study of another spectral triple that arises from classical differential geometry

[17, 19]. A real spectral triple is said to satisfy the second-order condition3 when

JClD(A)J−1 ⊆ ClD(A)′, where ClD(A)′ denotes the commutant of ClD(A) in

B(H). If, moreover, instead of the inclusion above we have the equality, a spectral

triple is said to have the Hodge property. The Hodge condition can be interpreted

as a statement that elements of the Hilbert space can be viewed as noncommu-

tative analogues of differential forms [17]. This definition was motivated by the

study of the spectral triple constructed for closed oriented Riemannian manifold

with the Hilbert space being L2 (
∧•

C T
∗M) and with the Hogde-de Rham opera-

tor as a Dirac operator. The behaviour of the Hodge property under the tensor

products was recently examined in [18].

1.1.5 Reconstruction theorem and beyond

We have seen that certain types of spectral triples can arise from manifolds. In

the case of spin manifolds, there is a series of interesting features that are possessed

by the resulting canonical spectral triple. Furthermore, one can also discuss e.g.

the notion of orientability and the Poincaré duality within this framework. The

natural question then arises: is it possible to find a set of conditions on a spectral

triple that will ensure that this triple comes from the canonical construction? In

other words, can the spin manifold (with other structures on it) be reconstructed

out of a (decorated) spectral triple? The answer is positive. It turns out that,

under certain assumptions on a spectral triple with a commutative algebra A,
3See also [20] for a different, but equivalent, formulation of the second-order condition.
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it describes the geometry of some smooth compact manifold. This statement was

rigorously formulated in the celebrated Connes’ reconstruction theorem, first stated

as a hypothesis in [21]. The idea of the proof was already presented therein, but

some remaining technical steps were, in their final form, made in [22] almost two

decades later. Among these requirements, the so-called Connes’ seven axioms

play a central role. One can find a detailed discussion of the roles of the individual

axioms in [23], together with a pedagogical introduction to the subject. The original

Connes’ formulation of these axioms can be found in [22, 24] (see also [25] and

[6] for further discussion). Furthermore, as it was shown by A. Connes [26, 27],

the knowledge of the Dirac operator is crucial information that could be used to

determine the metric structure4 on M. (For further discussion of the Connes’

distance formula see also [28].)

The class of manifolds that is covered by this theorem does not contain several

interesting examples. If one would restrict spectral triples only to the ones that

satisfy assumptions of the reconstruction theorem, then a large set of objects, which

are naturally of geometric nature, will be excluded. In other words, Connes’ choice

for axioms allows to describe certain geometries, but they cannot be thought of

as the axioms for the most general geometry - one can work with more general

spectral triples. For example, the real structure does not necessarily exist for a

generic spectral triple and this corresponds to the distinction between spin and

spinc structures on the manifold. Moreover, there are known natural examples of

spectral triples for which the first-order condition is not fulfilled. They originated

from the studies of quantum spheres [29, 30, 31, 32].

The aforementioned reconstruction theorem covers only a subclass of Rieman-
4For the original ideas of noncommutative spaces see [10].
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nian manifolds. One direction for looking for its generalizations is to consider

pseudo-Riemannian geometries. This subject was intensively studied in recent

years. Nowadays, there is still no analogue of Connes’ reconstruction theorem for

such commutative geometries and moreover, there is no common agreement on

what should be a rigorous definition of pseudo-Riemannian spectral triples, but

several proposals, on different levels of exactness, were made. The analysis of clas-

sical pseudo-Riemannian Dirac operators in [33] was one of the crucial indications

for further directions of search. The certainly not complete list of different propos-

als for a formulation of noncommutative pseudo-Riemannian geometries contains

[34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. In [47] yet another formulation

generalizing previous ideas from [48] was made.5

Yet another generalization can be performed to cover also a class of spaces that

are non-compact. Several different proposals for locally compact ones were made,

see e.g. [50, 51, 52, 53], but this subject is certainly not closed yet. From the per-

spective of physical applications, it would be interesting to have a framework that

covers both pseudo-Riemannian and non-compact spaces: the Minkowski space-

time, being the fundamental space for the description of field theories for particle

physics, is of this type. Furthermore, noncommutative analogs of manifolds with

boundaries, as well as with the certain type of singularities, were also discussed

[54]. Another examples of nontrivial spectral triples are the ones for noncommuta-

tive tori [55] or more general θ-deformations of manifolds [56], Moyal deformation

[57] as well as κ-deformations [58, 59].
5See also [49] for a brief overview of this approach.
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1.1.6 Twisted spectral triples

There is yet another modification of the original approach to noncommutative

geometry, introduced by Connes and Moscovici to geometrize certain algebras [60],

where the notion of a spectral triple is replaced by its twisted version. We do not

intend to discuss here this approach in detail, but let us just mention that the

main idea is to replace the usual commutators by their certain modifications by an

automorphism ρ of the algebra A. More precisely, the twisted commutator [D, a]ρ

is defined as Da − ρ(a)D, a ∈ A, and the boundedness of them is demanded.

Furthermore, other axioms, e.g. the first-order condition, are replaced by their

twisted versions [61, 62]. More recently, twisted spectral triples without the twisted

first-order condition were also investigated in [63].

One can also try to incorporate some of the twisted conditions into the frame-

work of usual spectral triples. We remark that there exists an interesting class of

spectral triples with reality condition modified by a certain twist [64, 65, 66] as well

as the ones with multitwisted real structure [67]. The first of them was used to

find a relation between twisted spectral triples and the usual ones but with the real

structure modified - roughly speaking, it provides a mechanism to untwist twisted

triples. On the other hand, multitwists allow for the description of yet another

type of geometries that contain e.g. the partially rescaled conformal torus [68].

1.2 The spectral action principle

The fact that gravitational interactions can be described purely geometrically

can be formulated in a way that emphasises the role of the Hilbert-Einstein action.

The cornerstone of the spectral action principle is the idea that the form of the

physical action can be derived out of spectral data associated with a given man-

19



ifold. In other words, the spectral triple can be used to produce certain action

functional. This groundbreaking idea originated in [69] and then was extensively

studied, both from a purely mathematical perspective and possible applications in

physical models.6 We briefly present here the main idea following [23, 71]. We refer

to [72] for a rigorous mathematical formulation of spectral action and its properties.

1.2.1 The general construction

For a given spectral triple with the Dirac operatorD, and for a parameter called

a cutoff energy scale Λ > 0, we consider the operator DΛ = |D|
Λ . Let f : R+ → R+

be a positive function chosen so that the operator f(DΛ) is of a trace class. The

bosonic spectral action is then defined as

Sb(D) = Trf

( |D|
Λ

)
. (3)

The meaning of the adjective bosonic will become clear later. For most of physical

applications the common choice for the function f is by taking it to be the char-

acteristic function of the unit interval [0, 1]. In this case the spectral action just

counts the number of eigenvalues of the Dirac operator which are smaller than the

cutoff parameter Λ. It is also possible to take f as an positive even function on the

real line and use D
Λ , which is also a common choice in the literature - see e.g. [9].

Moreover, one can also use D2

Λ2 instead of D
Λ , but this choice is not always equivalent

to the previous ones, e.g. some differences appear when D is not symmetric or the

manifolds are not closed.78

6In fact, a certain version of this idea was already present in [70].
7See [23] for a discussion of this choice and the problem of regularization.
8In the latter case the so-called η-invariants start playing a role. This discussion, however, is beyond the scope

of this thesis.
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We now briefly summarize here techniques that allow for effective computations

of the bosonic spectral action and are the crucial ones for our purposes. In the first

part, we will closely follow the presentation in [9]. Our first goal is to have an

asymptotic expansion (as Λ → ∞) of the bosonic spectral action. In order to

achieve this, we have to remind first useful notions and results. Under certain

analytical assumptions on a spectral triple (finite summability - the existence of p

s.t. |D|−p is of a trace class - and regularity - boundedness of δk(a) and δk([D, a]),

with δ(·) = [|D|, · ], for all a ∈ A and k ≥ 0), the so-called dimension spectrum

can be defined, as a subset of the complex half-plane with non-negative real part,

consisting of singularities of analytic functions ζℓ(z) = Trℓ|D|−z, with ℓ belonging

to certain algebra (the one generated by all δk(a) and δk([D, a]), a ∈ A, k ≥ 0).

For details see [9, Def. 5.9]. Using properties of the Mellin transform, assuming

that the function f is given by a Laplace-Stieltjes transform of some measure on the

positive real half-line and, moreover, that the dimension spectrum is simple, one

can show that the following asymptotic expansion of the bosonic spectral action is

true [9, Prop. 7.7]:

Tr f

(
D

Λ

)
=
∑

ℓ

fℓΛ
ℓ 2

Γ
(
ℓ
2

)c− 1
2ℓ
+ f(0)c0 +O

(
1

Λ

)
, (4)

where fℓ :=
∫
f(z)zℓ−1dz, the summation is performed over the dimension spec-

trum, and cα are the coefficients of the heat kernel expansion

Tr e−tD2

=
∑

α

tαcα, (5)

which exists under the aforementioned assumptions on the spectral triple (see [9,

Lemma 7.6]).
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1.2.2 Spectral action in terms of Wodzicki residue

Let us now concentrate on the canonical spectral triple for a closed d-dimensional

manifold M. The spectral action principle applied to it, in particular, reproduces

the Hilbert-Einstein action [24, 73, 74, 75]. This result can be further understood

from a slightly different perspective. Consider a finite dimensional vector bundle

E over M. One can then consider the algebra ΨDO(E) of all pseudodifferential

operators9 on it10. It was shown by M. Wodzicki [78] that there exists a unique,

up to a multiplicative constant, trace on ΨDO(E), given by

Wres(P ) =
1

(2π)d

∫

S∗M
Tr
(
σP−d(x, ξ)

)
dx dξ, P ∈ ΨDO(E), (6)

the Wodzicki residue [79]. Here σP−d(x, ξ) is the symbol of P of order −d, and S∗M
is the associated cosphere bundle.

In case P is a differential operator Γ(E) → Γ(E) of order m, given in local

coordinates by

(Pϕ(x))i =

rank(E)∑

j=1

m∑

|α|=0

(−i)|α|aijα (x)∂αxϕj(x), (7)

with α = (α1, . . . , αn) being a multi-index, (aij) ∈ Mr(C) and ∂αx = ∂α1

∂x
α1
1
. . . ∂αn

∂xαn
n

,

its symbol takes the form
m∑

|α|=0

aα(x)ξ
α with ξ = ξµdx

µ. The principal symbol of

P , σPm(x, ξ), is defined as the highest term in powers in ξs of this symbol. Operator

P is called elliptic if its principal symbol is invertible over {(x, ξ) : ξ ̸= 0}. In was

argued in [74], and then revisited in [80], that the coefficients of the heat kernel

expansion can be expressed in terms of Wodzicki residua. More precisely, using the

properties of the zeta function [76, 79] and the Mellin transform, one can show [80]
9See e.g. [76, 77] for the definition and properties of pseudodifferential operators.

10In fact, this generality is not necessary for most of our purposes in this thesis, and it is enough to work only

with differential operators. Nevertheless, statements here are made in this more general setting.
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that the kth coefficient is proportional to the Wodzicki residue of d−m
k th power of

the inverse of P = D2. This feature was also discussed later e.g. in [81, 82, 83].

The above considerations can be summarized by saying that the bosonic spec-

tral action for the canonical spectral triple associated to a closed four-dimensional

Riemannian manifold M is of the form

Sb(D) ∼ Λ4Wres(D−4) + cΛ2Wres(D−2), (8)

with some constant c. This is a powerful formula which can be extended to other,

more general, spectral triples, e.g. for the noncommutative torus [84].

1.3 Gauge theories and almost-commutative geometries

The idea of using spectral action to derive effective physical Lagrangians, as

demonstrated for the Hilbert-Einstein action in the case of General Relativity, can

be further extended into Yang-Mills-type theories. The framework that allows for

this procedure is the almost-commutative geometry - the one that combines the

canonical, commutative, spectral triple for a spin manifold M with some finite-

dimensional one. The resulting object can be roughly thought of as a product

M×F , where F is a finite space [85], and is referred to as an almost-commutative

geometry. The idea of applying such product type geometries in particle physics is

closely related to the one of Kaluza-Klein models [86, 87, 88], with F playing the

role of “an internal space” at every point of the manifold M.11

Finite geometries are formally defined as spectral triples with both an algebra

AF and a Hilbert space HF being finite-dimensional. In this case, we are working

with matrix algebras, and all operators are just finite matrices. More precisely,
11In contrast to the Kaluza-Klein model, the internal space here is finite (i.e. zero dimensional) instead of being

a circle.
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AF
∼=

N⊕
i=1

Mni
(C), for some N > 0, HF =

⊕
i,j

Hij with Hij = Cni ⊕ Crij ⊗ Cnj for

some rij ∈ N. An operatorD can be decomposed into componentsDij,kl = PijDPkl

with Pij being the projection operator on Hij. Only purely algebraic conditions

are relevant, and the ones of analytical nature are void. Finite spectral triples are

nowadays well-understood [89, 90, 91]. One can express all the algebraic conditions

on finite spectral triples in terms of the components Dij,kl of a Dirac operator

and similar ones of other operators involved (e.g. grading). They can be also

represented graphically by the use of the so-called Krajewski diagrams. Despite

their simplicity, finite spectral triples can describe many non-trivial geometries,

including fuzzy spaces [92, 93, 94].

In order to rigorously introduce almost-commutative geometries, we have to

first define tensor product of spectral triples. On the level of algebra and Hilbert

space this is obvious - we take appropriate tensor products. The only subtlety

comes from the matching of KO-dimensions. One has to consistently define both

the Dirac operator for the product geometry, the grading for the case of even triples,

and the real structure if the triples we started with were in addition real. For the

detailed discussion, we refer to [95] as well as [96]. For our purposes, we consider

here only a specific example of this construction.

An even almost-commutative (spin) geometry (sometimes called AC-manifold)

[95, 9] is a spectral triple with an algebra C∞(M,AF ) ∼= C∞(M) ⊗ AF and a

Hilbert space L2(M,S)⊗HF . The Dirac operator for this geometry is of the form

DM ⊗ I+ γ5 ⊗DF , (9)

where DF is a Dirac operator from the finite triple. The grading is the tensor prod-

uct of the canonical grading for the manifold M and the one from the finite spectral

triple. Similarly for the real structure. Methods developed to the description of
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finite triples turned out to be useful also for a classification of almost-commutative

geometries [97, 98, 99, 100, 101, 102].

We will now briefly summarize how the framework of almost-commutative ge-

ometries allows for the description of gauge theories. We follow here [95, 9] and we

refer the reader there for a detailed pedagogical introduction to this subject.

We start with the observation that Aut(C∞(M)) ∼= Diff(M), so that, by

analogy, one can define Diff(M×F ) as the automorphism group of C∞(M,AF ).

It turns out that this is not the full symmetry group of the AC-manifolds. There

exist other, inner, symmetries of M×F , implemented by unitary transformations

U : H → H being defined by an adjoint action of the unitary group U(A), i.e.

U = Ad(u) = uJuJ−1, u ∈ U(A), with J = JM⊗JF . The only part of the spectral

triple that is affected by this transformation is the Dirac operator, D 7→ UDU∗.

The gauge group G(M× F ) of an almost-commutative geometry is defined as the

set of all transformations U of the above form, and the full symmetry group of this

spectral triple is then G(M× F )⋊ Diff(M) [9, p. 138] (see also [95, Sec. 2.4.4]).

One can show that this group is isomorphic with the automorphism group of a

certain pricipal fibre bundle [95, 103, 104].

In order to describe the gauge fields in terms of inner fluctuations we first recall

the notion of Morita equivalence for unital algebras A and B. These algebras are

called Morita equivalent if there exists a B−A-bimodule E and an A−B-bimodule

F s.t. E ⊗A F ∼= B and F ⊗B E ∼= A (see [9, Def. 6.9] and the discussion therein).

For a spectral triple (A,H, D, J, γ) we consider yet another one with EndA(E) as

an algebra, E ⊗ H ⊗ E◦ as a Hilbert space12, and with the Dirac operator, real

structure and the grading defined in an appropriate way - see [9, p. 113] for details
12Here E◦ denotes the conjugate module of E (treated as a right A-module) having E as set of elements but

with the left A-module structure defined by the right action by adjoints of elements of A.
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of this construction. This can be achieved in a way that if the spectral triple we

started with was equipped with a hermitian connection ∇ : E → E ⊗A Ω1
D(A)

associated to the derivation d(a) = [D, a], then the resulting collection of data also

defines a real even spectral triple [9, Thm. 6.16].

Demanding Morita self-equivalence in the above construction, EndA(E) ∼= A,

the hermitian connection ∇ : A → Ω1
D(A) has to be of the form d + ω with

ω = ω∗ ∈ Ω1
D(A), and, finally, the Dirac operator we started with gets fluctuated

into Dω = D + ω + ϵJωJ−1. Taking ω = u[D, u∗], the unitary equivalence of

spectral triples described before turns out to be a special case of this construction

[9, Prop. 6.17]. For further discussion of the role of Morita equivalence we refer to

[25].

In order to parametrize fluctuations of the Dirac operator it is convenient to

consider a bundle E = S ⊗ (M × HF ) and the so-called twisted connection ∇E

on it (for details of this construction see e.g. [95, p. 23] and [9, p. 141]). Then

the operator D2
ω can be written in the form ∆E − F , where ∆E is the Laplacian

associated to the twisted connection on E, and F is a certain endomorphism of E

([95, Prop. 3.1] and [9, Prop. 8.6]). For an operator of this form the heat kernel

expansion is known [76, Sec. 1.7] and, in the case with dimM = 4, it takes the

form (see [25, Sec. 11] and [95, Sec. 3.2])

Tr f

(
Dω

Λ

)
∼ 2f4Λ

4a0(D
2
ω) + 2f2Λ

2a2(D
2
ω) + f(0)a4(D

2
ω) +O

(
1

Λ

)
, (10)

where fj is the jth moment of the function f , and ak are the so-called Seeley-

DeWitt coefficients. We refer to [105] for a detailed discussion of computational

methods of these coefficients, and to [76] for rigorous mathematical formulation.
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1.4 Spectral Standard Model

The main idea behind Connes’ derivation of models describing particle physics

[106] can be summarized as follows: by choosing an appropriate finite spectral

triple, considering it as a part of an AC-manifold, and computing the corresponding

spectral action, one expects to end up with an action functional, from which an

effective Lagrangian describing the physical model can be read.

Since unitary elements of the algebra AF are related with the gauge group of

the model, one of the simplest candidates for the algebra that could result, in the

above sense, in the effective Lagrangian for the Standard Model is

AF = C⊕H⊕M3(C), (11)

where H stands for the algebra of quaternions. The finite-dimensional Hilbert

space HF is chosen so that its dimension is equal to the number of fermionic

degrees of freedom (leptons and quarks) in the physical model. Both particles and

antiparticles are treated as independent ones. The chirality is also included, and

its presence enlarges the size of HF by a factor of two. Yet another factor of three

follows from the number of generations. Furthermore, the presence of the chiral

structure implies the existence of a natural grading on HF that separates left-

handed particles from right ones. The real structure on the finite part is given by

an operator that replaces particle with corresponding antiparticle (and vice versa),

composed with the complex conjugation.

In order to proceed with the procedure described in the previous section, one

has to represent the algebra AF on the Hilbert space HF . For one generation of

particles, an element (λ, q,m) ∈ AF is represented as


λ 0

0 λ


⊕ q in the leptonic

sector, and for each color in the quark sector. The action on antileptons is the
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scalar one - multiplication by λ - while on antiquark sector (with color included)

the operator I4 ⊗m is taken.

The choice of a Dirac operator is more subtle. The standard choice is based

on the assumption that this operator commutes with the subalgebra {(λ, λ, 0)} -

the physical requirement of having massless photon [71]. Then one can argue that

the family of possible choices for the Dirac operator DF has to be reduced to a

certain class of them [107, 108]. An explicit form of the usually made choice for

this operator can be found e.g. in [9, Chapt. 11]. See also [109] for a detailed

discussion of a noncommutative Standard Model. Many historical remarks can be

found also in [23, 9, 71].

Despite the fact that the above choice for an algebra seems to be very natural

and one may deduce its appearance almost immediately, in reality it is not the case.

The natural question is if the axioms of a spectral triple can uniquely determine the

form of the triple that describes the Standard Model. This problem was considered

in [110, 111], where the authors fixed all the parts of a spectral triple but not an

algebra, and tried to determine possible choices that are compatible with the rest

of the triple. They argued that the Standard Model can be thought of as the

smallest possible noncommutative space. It was also demonstrated that the lack of

the first-order condition, in the minimal case, leads to the algebra H⊕H⊕M4(C),

which gives rise to a family of Pati-Salam models [112] - one of the simplest models

going beyond the Standard Model - intensively studied in recent years from the

perspective of the noncommutative geometry [113, 114, 115, 116, 117, 118]. Spectral

triples without the first-order condition and consequences of its lack were analysed

from yet another angle in [119]. Even more general geometry can be obtained by

further relaxing the condition of commutation between elements of the algebra and
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the grading. One ends up then with the so-called Grand Symmetry model [111],

with AF =M2(H)⊕M4(C).

Yet another way of analyzing the moduli space of spectral triples for the Stan-

dard Model is by fixing the algebra, AF = C⊕H⊕M3(C), as well as the Hilbert

space, and examine possible choices for the remaining elements of the spectral

triple. This way of proceeding was present in [19, 17]. Different types of additional

axioms can be imposed in order to uniquely fix the form of the Dirac operator. In

particular, in [47] we have proposed to take into account the pseudo-Riemannian

structure of the finite spectral triple in order to reduce the number of acceptable

Dirac operators, and, as a result, eliminate the possibility of the existence of lepto-

quarks. This idea was later applied also in the case of the Pati-Salam model [118],

reducing them to the so-called Left-Right symmetric ones [120].

Most of the aforementioned choices for a spectral triple of the Standard Model

were studied not only on the level of finite triples but also within the full almost-

commutative framework. The resulting bosonic spectral action, together with

the fermionic one13, Sf(Dω) = ⟨ψ,Dωψ⟩, reproduces the Euclidean physical La-

grangian of the Standard Model (see [9, Chapt. 11] and [109] for details; this

computation was performed in a full glory for the first time in [107]). Notice that

both in the Hilbert space and in the Dirac operator, only the information about

the fermionic degrees of freedom were directly encoded: the basis of HF was chosen

in a way that each of its elements corresponds to an elementary fermionic degree

of freedom, and entries of the finite Dirac operator contain Yukawa matrices. The

bosonic fields appear then as a result of taking all the fluctuations of the product

Dirac operator. Since the fluctuations are closely related to the gauge group of the
13See e.g. [9, note on p. 131] for the discussion of its precise form and the role of additional decorations present

in its different definitions. We will come back to this issue in the forthcoming subsection
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model, as discussed in Sec. 1.3, it is not surprising at all that the corresponding

gauge fields appear as a result of this computation. On the other hand, it is worth

stressing that also the Higgs field (with a proper shape of the potential term) orig-

inates out of exactly the same procedure. In other words, within this framework

both gauge fields and the Higgs boson are put on the same footing. Furthermore,

the number of free parameters in the resulting Lagrangian is smaller than in the

one usually used in particle physics, and this feature allows e.g. for the computa-

tion of a mass of the Higgs boson. This was performed using the renormalization

group techniques - for the details see [25, 107, 121] and also [9, Chapt. 12] for a

pedagogical introduction to the subject. The numerical value of this mass, result-

ing from this computation, is close to the one measured experimentally, but not

identical, within the statistical error. The existence of this discrepancy was one

of the motivations to search for modifications of the spectral triples introduced by

Connes. The list of different proposals contains, and is not limited to, models with

additional fermions [122], models with the so-called σ-field [123] (responsible also

for curing the vacuum instability issue, originally known from the Weinberg-Salam

theory [124, 125]), the Grand Symmetry approach [111], or models based on twisted

spectral triples [126].

1.4.1 The fermion doubling problem

We now concentrate on the fermionic content of the noncommutative Standard

Model. Within the almost-commutative framework, the full Hilbert space is of the

product type, L2(M,S)⊗HF . The finite Hilbert space HF decomposes into HF,L⊕
HF,R⊕Hc

F,R⊕Hc
F,L, where HF,L/R corresponds to left/right particles, while the ones

with the superscript c correspond to antiparticles. Similar decomposition exists
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also for the spinorial part, L2(M,S). The tensor product structure introduces

then redundancy in the degrees of freedom: there are four times more elements

of the basis of the full Hilbert space than really needed. Therefore, a method

for eliminating the redundant ones has to be developed in order to end up with

the physical Lagrangian. This issue was for the first time noticed in [127], and the

authors related it to similar behaviour of mirror fermions in chiral gauge theories14.

This problem was also discussed in [129], where the possible role of the Lorentzian

structure was observed. One factor of two in the counting of the degrees of freedom

can be eliminated by introducing certain projection [107, 127] and considering

H+ =
1 + γ5 ⊗ γF

2

(
L2(M,S)⊗HF

)
(12)

as the physical Hilbert space of the model15. The modified fermionic spectral action

is then taken to be of the form

Sf(Dω) =
1

2
⟨Jψ,Dωψ⟩, ψ ∈ H+. (13)

The presence of the real structure J also cures the other factor of two. Following

[130], the first type of doubling is called the mirror doubling, while the second

one is the charge-conjugation doubling. The above way of solving the overcounting

problem may seem to be quite an ad hoc, but in [130] it was argued that the

Lorentz symmetry, together with an appropriately understood Wick rotation, can

explain the origin of this procedure.
14A follow up of this idea one can find in [128], where the mirror fermions were discussed in more details. We

remark that the spectral triple discussed therein can be thought of as a certain example of non-product geometry.
15See also [25, Chapt. 16.3] for a further discussion.
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1.4.2 Lorentzian formulation

The spectral action formalism requires the Euclidean framework. On the other

hand, the physical Standard Model is described in the Lorentzian framework, and

one has to then develop a consistent way of going from one formulation to the other.

It is usually done on the level of path integrals by using the Wick rotation. This

may in principle leads to potential problems, especially when one transforms Eu-

clidean fermionic quantities or topological terms into the Lorentzian ones (and vice

versa). Since there is known no consistent definition of the fully pseudo-Riemannian

bosonic spectral action, although some of the existing attempts in this direction are

promising [131, 132], the Wick rotation is nowadays the most powerful tool. Nev-

ertheless, one can try to take into account the Lorentzian structure on a different

level. It is nothing unexpected that symmetries of the Minkowski spacetime may

manifest themselves in plenty of places. Instead of considering the fully Lorentzian

model one may follow the aforementioned idea. The first consistent formulation of

the Lorentzian noncommutative Standard Model was performed by J. Barrett in

[35]. The crucial observation was that demanding the existence of the Lorentzian

structure for the manifold requires certain changes in the finite part that led to

the conclusion that its KO-dimension has to be equal to six16. It is remarkable to

stress that also in this case the fermion doubling problem was partially solved and

it suggests a deeper connection between the Lorentzian structure and the fermion

doubling problem. This is indeed the case, as it was shown in [130], where the

authors demonstrated how the Wick rotation has to be consistently performed for

both the bosonic and fermionic spectral actions, and that this procedure can be

used for an explanation of the previously existing solutions of the fermion doubling
16Analogous conclusion was made independently also in [108].
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problem.

Yet another approach to the Lorentzian Standard Model was recently re-examined

in [133], where the pseudo-Riemannian spectral triples play an essential role. We

refer to section 1.1 for a review of different approaches to these types of geometries.
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2 New directions

From the discussion in the preceding section, it is clear that noncommutative

geometry, in its spectral formulation, is a powerful language, which can be used for

the description of models in particle physics as well as for the theory of gravitation.

All of the physical models considered so far were analysed within the almost-

commutative framework. The natural question that arises is if the requirement

of working with geometries of this type is really necessary and if certain types of

non-product structures can be found in physical models.

The main goal of this thesis is to analyse certain types of non-product geome-

tries from the perspective of their possible applications in particle physics and

cosmology. The thesis has a form of a series of three published articles17, to-

gether with a supplemental material (whose content is available in a form of two

preprints). Subsection 2.1 is dedicated to non-product type geometries with appli-

cations to the Standard Model of particle physics, while in subsection 2.2 certain

cosmological models with non-product structures are examined.

17One of the article is reproduced from its postprint version due to copyright agreements and local regulations.

The hyperlink to the published version (together with the DOI identifier and a credit line) is provided instead.
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2.1 Non-product geometry for the Standard Model

Despite the fact that the spectral Standard Model was extensively analysed in

the past (see section 1.4 for a more detailed discussion), and a lot of its features are

well-understood, it is still an active subject of intense studies. One of the reasons

is that there are still some unresolved, or only partially resolved, issues that are

of interest due to their physical importance. One has to mention several questions

related to the computation of the Higgs mass, the purely Lorentzian formulation,

and the computation of spectral action. Furthermore, the interplay between the

Lorentzian structure and the fermion doubling problem is yet another aspect that

requires further investigation. We stress that we do not claim that none aspects

of these problems are not understood at all or some possible ways of finding the

solutions were not postulated or examined in the past. On contrary, all of them

were studied from different perspectives - we refer to sections 1.4.1 and 1.4.2 for a

review of these problems. Yet another disclaimer has to be added: the proposed

formulation is possibly not the only solution to the problems we are going to discuss.

Our goal here is to find a formulation of the Standard Model of particle physics,

within the framework of noncommutative geometry, which does not assume the

almost-commutativity of the corresponding spectral triple. Furthermore, we would

like to take into account as much of the Lorentzian structure as possible. Since

the fully pseudo-Riemannian formalism is not yet developed, we have to in cer-

tain places make use of the Euclidean counterpart. Nevertheless, the role of the

Lorentzian structure present in the physical theory plays a crucial role in the for-

mulation and properties of our model.
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2.1.1 Formulation of the model and its basic predictions

The Lorentzian structure in the physical field-theoretic description of the Stan-

dard Model plays an important role. We propose a model based on noncommutative

geometry which can encode the content of the Standard Model and possesses its

features. The starting point of our analysis is devoted to the fermionic spectral

action. Before discussing the Standard Model itself, the structure of the Minkowski

spacetime has to be revisited. First of all, the role of the Krein structure is empha-

sized. For the canonical Dirac operator iγµ∂µ we observe that the fermionic action
∫
M ψDψ can be equivalently written in the form

∫
M ψ†D̃ψ, where D̃ = γ0D is

called the Krein-shift of D, and relations satisfied by the Lorentzian Dirac operator

can be translated into ones for its Krein-shift.

Using a convenient parametrization of the fermionic content of the Standard

Model in terms of four-by-four matrices with entries being the Weyl spinors with

a fixed chirality, we then proceed with the construction of the spectral triple that

could encode this model. The algebra is taken to be exactly the same as in the

case of the almost-commutative Standard Model: algebra of C ⊕ H ⊕ M3(C)-

valued functions over M. However, the Hilbert space differs from the one used

in that framework - in our case it is formed from the aforementioned four-by-four

matrices. We consider separately the left πL and right πR representations of the

algebra on this Hilbert space18. All the operators acting on this space can be, at

every point of the Minkowski spacetime, represented as an element of M4(C) ⊗
M2(C) ⊗M4(C). This convenient parametrization allows e.g. for discussing the

form of a Dirac operator. From the physical perspective, the full Lorentzian Dirac
18Notice that the real structure is not present at this level, and the bimodule structure is obtained by explicitly

defining left and right representations.
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operator differs from the one associated to the Minkowski spacetime by a certain

finite endomorphism DF , which, by a Lorentz invariance, is of the form M1 ⊗
id⊗M2 for some M1,M2 ∈ M4(C). In particular, this part of the Dirac operator

has to commute with the natural grading. This leads to a conclusion that the

Dirac operator which describes the Lorentzian Standard Model is a sum of two

parts, each of them having a different commutation rule with the chirality operator.

This clearly demonstrates that our construction is beyond the almost-commutative

framework. However, this is a mild generalization - we only reduce the Hilbert space

and take a more general Dirac operator than the one for product geometries. We

stress that our choice of the Hilbert space automatically solves the fermion doubling

problem - there is no mirror doubling as well as the charge-conjugation one. The

latter is absent because we do not treat, from the very beginning, antiparticles as

independent degrees of freedom, in the same way as they are considered in the

physical Standard Model.

Having formulated the model, the natural question of the moduli space of DF

operators arises. The main idea is to demand certain conditions not at the level of

this operator itself, but rather by using its Krein-shift. By imposing the (appro-

priately understood) first-order condition, we show that D̃F does not break color

symmetry. Furthermore, the spinc condition, which requires equality between the

image of the right representation and the commutant of the Clifford algebra for

the left representation, is automatically satisfied. For three generations of particles

the Hodge condition, however, imposes additional conditions on the entries of D̃F

parametrized by the Yukawa matrices. These conditions can be satisfied, in the

case of the physical Standard Model, e.g. when there is no massless neutrino.

The interplay between the spinc and Hodge conditions turns out to be deeper.
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Considering the doubled model, with πL ⊕ πR as a representation and the real

structure acting on the direct sum of two copies of the Hilbert space as a flip map

composed with complex conjugation, we show that if the model we started with

satisfied the spinc condition, then its doubled version has the Hodge property.

Moreover, the lack of real structure can be related to the CP symmetry. For one

generation of particles, commutation relation between the Krein-shift of theDF op-

erator and the real structure implemented as complex conjugation on the finite part

requires their masses to be real, however, for three generations, which is the case of

physical interest, it implies that both the Pontecorvo-Maki-Nakagawa-Sakata and

Cabibbo-Kobayashi-Maskawa mixing matrices do not possesses nontrivial phases,

i.e. the CP symmetry is preserved.

Finally, we find an intriguing relation between our formulation and the approach

based on twisted spectral triples. Instead of the twisting by grading, commonly

considered in such framework, its modification, to which we can refer to as twisting

by pseudo-Riemannian structure, appears. In this formulation, the automorphism

that produces the twist is constructed out of the γ0 operator, which explains the

origin of this nomenclature.

Article below reprinted from: [A. Bochniak and A. Sitarz, Spectral geometry for

the standard model without fermion doubling, Phys. Rev. D 101, 075038 (2020),

DOI: 10.1103/PhysRevD.101.075038 (Copyright 2020 by the American Physical

Society)].
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I. INTRODUCTION

The standard model of particle interactions is certainly
one of the most successful and one of the best tested
theories about the fundamental constituents of matter and
the forces between them. Even though we still have no
satisfactory description of the strong interactions in the
low-energy regime and there are some puzzles concerning
masses and the character of neutrinos as well as there are
some experimental signs that could point out to new
physics, the standard model appears to be robust and
verified. Yet neither the content of the fermion sector,
the mixing between the families, nor the fundamentally
different character of the Higgs boson from other gauge
bosons appears to have a satisfactory geometrical
explanation.
One of the few theories that aimed to provide a sound

geometrical basis for the structure of the standard model,
explaining the appearance of the Higgs and symmetry-
breaking potential, was noncommutative geometry (see
Refs. [1–3]). It was constructed with the core idea that
spaces with points can be replaced with algebras and
provided a plausible explanation of the gauge group of
the standard model and the particles in its representation as
linked to the unitary group of a finite-dimensional algebra.
Merged with the Kaluza-Klein idea that the physical
spacetime has extra dimensions, the geometry of the
finite-dimensional algebra (in the noncommutative sense)
gave rise to the Higgs field understood as a connection, and
the Higgs symmetry-breaking potential appeared as the
usual Yang-Mills term in the action.

The original model, which is based on the construction
of a product geometry, with the resulting geometry being
the tensor product of a usual “commutative” space with
the finite-dimensional noncommutative geometry suffers
from two problems. First, in the original formulation, it
is Euclidean. Second, the product structure leads to the
quadrupling of the degrees of freedom in the classical
Lagrangian [4,5]. Moreover, the conditions put on the Dirac
operator for the finite geometry are not sufficient to restrict
the class of possible operators to the physical one, leaving
the possibility for the nonphysical SUð3Þ-breaking geom-
etries [6–9]. Though the latter problems appear to have at
least a partial solution [8], we believe that they can be
completely avoided if the noncommutative geometry
behind the standard model is assumed to be spinc only.
It is worth noting that, in addition to the aforementioned

issues in formulating the noncommutative standard model,
there is also one significant problem related to the disagree-
ment in the predicted Higgs mass and its experimental
value [3]. Furthermore, there is also an accompanying
problem related to the low value of the Higgs, known as the
Higgs vacuum instability. Several possible solutions have
been proposed to fix these problems, starting from adding
new fermions [10,11], introducing an additional scalar field
(so-called σ field) [12,13], extending the algebra to the
Grand Symmetry models, [14,15] or using twisted spectral
triples formulation [16,17]. All of the mentioned extensions
are still based on the concept of real spectral triples with the
product geometry, and they similarly require cutting down
the quadrupled number of the degrees of freedom.
In what follows, we present a spinc description of the

geometry for the standard model, which does not require
fermion doubling and satisfies the spinc duality for spinors
provided that the mass matrices and mixing matrices are
nondegenerate. The crucial role is then played not by the
Lorentzian Dirac operator but rather by its Krein-shift D̃,
the product of the Krein space fundamental symmetry β
and the Dirac operator D. This operator can be understood
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as the self-adjoint component of the Krein decomposition
of the Lorentzian Dirac operator, D ¼ βD̃. Moreover, we
link the breaking of the J condition between the real
structure and the Dirac operator to the appearance of the
CP-symmetry breaking in the standard model.
We have to stress that the approach we take is based on

the physical Lagrangian of the standard model and it is
aiming to put a geometrical meaning to its form and the
major features like the lack of strong symmetry breaking or
CP violation. Our interpretation, based on the noncommu-
tative spinc geometry, explains both phenomena, and we
consider it as a strong signal to take this model seriously.
At present, we cannot provide a precise quantitative result
for the Higgs mass in our approach, which may be
compared with the experimental value. The explicit spectral
action computations for the model are currently in progress
[18], and for a next step, we aim to see whether the
extended models (with Grand Symmetry additional fer-
mions or a scalar field) will satisfy the spinc condition.

II. DIRAC OPERATOR FOR THE
STANDARD MODEL

The Dirac operator for the four-dimensional Minkowski
space is of the form D ¼ iγμ∂μ, with the gamma matrices
satisfying the relation γμγν þ γνγμ ¼ 2ημν, where ημν is
the standard Minkowski metric of signature ðþ;−;−;−Þ.
We use the conventions of [8], so that γ0 is self-adjoint and
the remaining gamma matrices are anti-self-adjoint.
The Lorentz-invariant fermionic action, which leads to

the Dirac equation, isZ
M
ψ̄Dψ ¼

Z
M
ψ†D̃ψ ; ð1Þ

where ψ̄ ¼ ψ†γ0 and D̃ ¼ γ0D. The operator, D̃, is a
symmetric operator, which we call the Krein shift of the
Dirac operator. This follows from the properties of the
Lorentzian Dirac operator D, which is Krein self-adjoint
[19], D† ¼ γ0Dγ0, where γ0 is the fundamental symmetry
of the Krein space. Written explicitly in the chiral repre-
sentation, it becomes

D̃ ¼ i

�
σμ 0

0 σ̃μ

�
∂μ; ð2Þ

where σμ and σ̃μ are the standard and associated Pauli
matrices, σ̃0 ¼ σ0, σ̃k ¼ −σk.
The Lorentzian Dirac operator and the related Lorentzian

spectral triple have the standard Z2 grading γ and the
charge conjugation operator given,

γ¼
�
12 0

0 −12

�
; J ¼ iγ2 ∘ cc¼ i

�
0 σ2

−σ2 0

�
∘ cc; ð3Þ

where cc denotes the usual complex conjugation of spinors.
The operators D, γ, J satisfy the usual commutation
relations for the geometry of the signature (1,3),

Dγ¼−γD; DJ ¼JD; J 2¼ 1; J γ¼−γJ ; ð4Þ

whereas for the Krein-shifted operator, we have

D̃γ¼ γD̃; D̃J ¼−J D̃; J 2¼ 1; J γ¼−γJ : ð5Þ

The so-far accepted and tested experimentally action for
the standard model of fundamental interactions can be
viewed as the extension of the action for a single bispinor to
a family of particles, with the additional terms in the action
arising from a slight modification of the Dirac operator
by an endomorphism of the finite-dimensional space of
fermions.
Before we discuss this extension and the conditions it

satisfies, we recall the notion of Riemannian spectral triples
and spinc-spectral triples, which form a bigger class than
these arising from generalization of the spin geometry only.

III. RIEMANNIAN AND PSEUDO-RIEMANNIAN
SPECTRAL TRIPLES

A Riemannian finite spectral triple [20] built over a
finite-dimensional algebra A is a collection of data
ðA;D;H; πL; πRÞ, where πL is the representation of A on
H and πR is the representation of Aop (the opposite algebra
to A) on H such that

½πLðaÞ; πRðbÞ� ¼ 0; ð6Þ

½½D; πLðaÞ�; πRðbÞ� ¼ 0; ð7Þ

for all a ∈ A and b ∈ Aop.
We say that the spectral triple is of spinc (see Ref. [21]

and compare with the classical result [22]) type if

ðClDðπLðAÞÞ0 ¼ πRðAÞ ð8Þ

or of Hodge type if

ðClDðπLðAÞÞ0 ¼ ClDðπRðAÞÞ: ð9Þ

By the generalized Clifford algebra ClDðπLðAÞÞ [and
similarly ClDðπRðAÞÞ], we understand the algebra gener-
ated by πLðaÞ and ½D; πLðbÞ� for all a; b ∈ A.
Of course, genuine Riemannian geometries require

further assumption that the operator D has a compact
resolvent. In the case of Lorentzian or, more generally,
pseudo-Riemannian geometries, we might follow the path
of Ref. [19], extending the definition of Lorentzian real
spectral triples to Lorentzian spinc geometries.

IV. FERMIONS AND THE ALGEBRA
OF THE STANDARD MODEL

Let us recall a convenient parametrization of the particle
content in the one-generation standard model [21],
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Ψ ¼

0
BBB@

νR u1R u2R u3R
eR d1R d2R d3R
νL u1L u2L u3L
eL d1L d2L d3L

1
CCCA ∈ M4ðHWÞ; ð10Þ

where each of the entries is the Weyl spinor over the
Minkowski space with a fixed chirality. For the algebra A,
we take the algebra of functions over the Minkowski space,
valued in C ⊕ H ⊕ M3ðCÞ, and chose the two representa-
tions of the algebra

πLðλ;q;mÞΨ¼

0
BB@
λ

λ̄

q

1
CCAΨ; πRðλ;q;mÞΨ¼Ψ

�
λ

mT

�
;

where λ, q, and m are complex, quaternion, and M3ðCÞ-
valued functions, respectively. The representation πL acts
by multiplying Ψ from the left, whereas πR acts by
multiplying Ψ from the right. This is the reason that we
transpose m so that πR is indeed a representation. Observe
that, since left and right multiplication commute, then
½πLðaÞ; πRðbÞ� ¼ 0 for all a; b ∈ A; i.e., the zero-order
condition is satisfied. Because of the simplicity of the
notation at every point of the Minkowski space, we can
encode any linear operator on the space of particles as an
operator inM4ðCÞ ⊗ M2ðCÞ ⊗ M4ðCÞ, where the first and
the last matrices act by multiplication from the left and from
the right and the middle M2ðCÞ matrix acts on the
components of the Weyl spinor.
The full Lorentzian Dirac operator of the standard model

is, in this notation, of the form

DSMΨ¼

0
BB@

iσ̃μ∂μ

iσ̃μ∂μ

iσμ∂μ

iσμ∂μ

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

ΨþDFΨ; ð11Þ

where DF is a finite endomorphism of the Hilbert
space M4ðHWÞ.
First of all, observe that the spatial part D is covariant

under the Lorentz transformations so that the Lagrange
density (1) is invariant. Indeed, using the SLð2;CÞ repre-
sentation of the Lorentz group with an appropriate trans-
formation of the Weyl spinors, it is obvious that D
transforms covariantly. On the other hand, DF will trans-
form covariantly, so the full fermionic action will remain
invariant under Lorentz transformations, only if it is an
element ofM4ðCÞ ⊗ id ⊗ M4ðCÞ, so it is a scalar from the
point of view of Lorentz transformations.
At this point, it is the Lorentz invariance and the

requirement that DF behaves like a scalar under Lorentz

transformations that fixesDF to commute with the chirality
Γ, which, in fact, can be written as an element of the algebra
of the standard model, Γ ¼ πLð1;−1; 1Þ. In the end, we
have the genuine Lorentzian Dirac operator D that anti-
commutes with Γ and the finite part of the full Dirac
operator,DF, commuting with Γ, whereas the Krein-shifted
parts have the opposite behavior.
Next, we find sufficient conditions for the Krein-shifted

operator gDSM to satisfy the first-order condition for the given
algebra and the chosen representation. First, observe that D̃
alone obviously satisfies the order-one condition and there-
fore we need to check only fDF. Suppose then that

½½fDF; πLðaÞ�; πRðbÞ� ¼ 0;

for all a; b ∈ A. As any element in πLðAÞ commutes with
πRðAÞ, it suffices to find all D̃F that are self-adjoint,
commute with the elements from πRðAÞ, and anticommute
with Γ. It is easy to see that such operators are restricted to

fDF¼
�

Ml

M†
l

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Dl

⊗e11þ
� Mq

M†
q

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Dq

⊗ ð14−e11Þ; ð12Þ

where Ml;Mq ∈ M2ðCÞ.

A. spinc condition

The Krein-shifted Dirac operator satisfies first-order
condition, yet it still may not provide the spinc spectral
geometry. We shall look for necessary and sufficient
conditions that the commutant of the (complexified)
Clifford algebra, ClDðπLðAÞÞ, generated by πLðAÞ and
½gDSM; πLðAÞ� is πRðAÞ. First, observe that all operators in
the so-defined ClDðπLðAÞÞ are endomorphisms of the
space M4ðHWÞ, which contain a subalgebra generated by
the commutators of D̃ with functions C∞

C ðMÞ. This sub-
algebra acts on the Weyl spinors pointwise and can be
identified with M2ðCÞ ⊕ M2ðCÞ-valued functions on the
Minkowski space. The resulting subalgebra of the Clifford
algebra acts only on the Weyl-spinorial components,
separately in the left and in the right sectors. The commu-
tant of this algebra in the endomorphisms of the Hilbert
M4ðHWÞ space is then contained in the M4ðCÞ ⊗ id ⊗
M4ðCÞ (at each point of the Minkowski space).
Further, consider the subalgebra generated by the com-

mutators of fDF with constant functions in A. It is a
subalgebra of M4ðCÞ ⊗ id ⊗ ðC ⊕ Cð3ÞÞ-valued constant
functions over the Minkowski space, and it is easy to see
that both subalgebras generate the full Clifford algebra.
Therefore, the common commutant of both parts will be the
commutant of the full Clifford algebra.
From the decomposition, it is easy to see that the

commutant of the second part is the functions in
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id ⊗ M2ðCÞ ⊗ ðC ⊕ M3ðCÞÞ and therefore the common
parts are functions valued in id ⊗ id ⊗ ðC ⊕ M3ðCÞÞ,
which indeed is the algebra πRðAÞ.

B. Three generations

Let us consider three families of leptons and quarks, that
is, the Hilbert space M4ðHWÞ ⊗ C3 with the diagonal
representation of the algebra. The only difference from
the previous section is that the matrices Ml and Mq are no
longer in M2ðCÞ but in M2ðCÞ ⊗ M3ðCÞ. As the algebra
acts diagonally on the Hilbert space (with respect to the
generations), we can again repeat the arguments of Ref. [23]
and argue that the spinc condition will hold if algebras
generated by πLðAÞ and Dl, Dq, respectively, will be full
matrix algebras, that is, ðM4ðCÞ ⊗ id ⊗ idÞ ⊗ M3ðCÞ,
independently for the lepton and for quarks.
Since the arguments we have used here are analogous to

ones used in the discussion of full conditions (Section 4.2.2
in Ref. [23]), we infer the same condition for the Hodge
property to be satisfied.
BothMl andMq can be diagonalized, yet because of the

doublet structure of the left leptons and quarks, the
components (up/down) cannot be diagonalized simultane-
ously. The standard presentation of the mass matrices for
the physical standard model is then

Ml ¼
�
ϒν 0

0 ϒe

�
; Mq ¼

�
ϒu 0

0 ϒd

�
;

where ϒe and ϒu are chosen diagonal with the masses of
electron, muon, and tau and the up, charm, and top quarks,
respectively, and

ϒν ¼ UfϒνU†; ϒd ¼ VfϒdV†;

with diagonal matrices fϒν, fϒd providing (Dirac) masses of
all neutrinos and down, strange, and bottom quarks, where
U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mix-
ing matrix and V is the Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix.
As was indicated also in Ref. [23], the sufficient

condition to fulfill the Hodge property is that for both
pairs of matrices ðϒν;ϒeÞ and ðϒe;ϒdÞ their eigenvalues
are pairwise different. This requirement is satisfied in the
case of the physical standard model, provided that there is
no massless neutrino (see Sec. 5.3 in Ref. [23]).

C. From spinc to Hodge condition

Consider for a while the Hilbert space HSM ¼ M4ðCÞ
with the same left and right representations of the algebra
as in the standard model case (the standard model Hilbert
space is the tensor product of the above with the space of
Weyl fermions). Taken with the Krein-shifted Dirac fDF

operator and Γ ¼ πLð1;−1; 1Þ, it is a Euclidean even
spectral triple.
Assume now that fDF is such that the spinc condition

holds. We shall describe now the procedure of the doubling
of the triple so that the resulting real spectral triple satisfies
the Hodge duality and is the finite spectral triple of the
standard model studied so far as the finite component of the
product geometry.
Consider H2

SM ¼ HSM ⊕ HSM with the representation
πL ⊕ πR. We define the real structure J as the composition
of the Hermitian conjugation with theZ2 action exchanging
the two copies of HSM, so that JðM1 ⊕ M2Þ ¼ M�

2 ⊕ M�
1.

It is clear that the conjugation by J maps the represen-
tation of the algebra A to its commutant. We extend Γ so
that the relation JΓ ¼ ΓJ holds and extend the Dirac
operator fDF in the following way:

D0 ¼ fDF ⊕ 0þ JðfDF ⊕ 0ÞJ−1:

Clearly, D0 anticommutes with Γ and commutes with J.
The Clifford algebra, that is, the algebra generated by πL ⊕
πR and the commutators withD0, is Cl eDF

ðπLðAÞÞ ⊕ πRðAÞ.
Because before the doubling we had the spinc condition, it
is clear that the commutant of the Clifford algebra contains
πRðAÞ ⊕ Cl eDF

ðπLðAÞÞ. It is therefore sufficient to verify

that there are no other operators T that map HSM to HSM,
which would satisfy that they commute with the repre-
sentation of Cl eDF

ðπLðAÞÞ ⊕ πRðAÞ. Identifying the Hilbert

space as C16 ⊕ C16, we see that the first component of
Clifford algebra is M4ðCÞ ⊕ M4ðCÞð3Þ (acting diagonally
on C16; the notation BðnÞ means that we take n copies of the
algebra B), and the second is Cð4Þ ⊕ M3ðCÞð4Þ. Since all
these algebras are independent of each other, there exists no
operator intertwining their actions; hence, the commutant is
exactly the one indicated above.

D. Reality and the CP violation

Let us take the real structure J acting on the finite part
just by the complex conjugation, that is, the real structure
implemented on M4ðHWÞ simply as id ⊗ J ⊗ id. Of
course, it does not implement the usual zero-order con-
dition; however, we still have a milder version of the zero-
order condition in the following form:

πRðAÞ ⊂ JπLðAÞJ−1:

We have already observed what are the commutation
relations between D̃ and J (and hence J). Next, let us see
whether similar commutation relations can be imposed onfDF. As both J2 as well as the anticommutation with Γ are
fixed, we see that by imposing the same KO-dimension
(6) for the Euclidean finite spectral triple as for the
Lorentzian spatial part we shall have JfDF ¼ fDFJ.
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This condition is very mild and means that the mass
matrices Ml and Mq have to be real. In case of one
generation of particles, it implies that masses of fermions
have to be real, which is hardly very restrictive.
Yet the situation changes when we pass to three gener-

ations as already discussed abovewhen considering the spinc
condition. Since J acts by complex conjugation, then the
requirement fDFJ ¼ JfDF is still equivalent to the matrices
Ml, Mq having only real entries. Using the standard para-
metrization described above, this leads to the reality of the
physical masses. However, since in the case of three
generations the matrices ϒν, ϒd are not diagonal, we must
ensure that both U and V mixing matrices are real.
If this is the case, then all phases in the standard

parametrization of these matrices should vanish, which
physically will have the interpretation of the CP symmetry
preservation. However, in case of the CKM mixing matrix
it implies that the Wolfenstein parameter η̄ has to vanish,
but experimentally, it is known that η̄ ¼ 0.355þ0.012

−0.011 [24].

The CP-violating phase δνCP in the neutrino sector, origi-
nated from the PMNS mixing matrix, was determined to be
δνCP=π ¼ 1.38þ0.52

−0.38 [24,25], which strongly confirms theCP
symmetry breaking. Therefore, the existence of CP viola-
tion may be interpreted as a shadow of J-symmetry
violation in the nondoubled spectral triple.

E. Twisted (pseudo-Riemannian) spectral triple

We have verified that the Krein-shifted Dirac operator
satisfies the order-one condition (7). It appears that this is
equivalent to the Lorentzian Dirac operator DST ¼ βgDST
satisfying a twisted version of the order-one condition,
that is,

½½DST; πLðaÞ�β; πRðbÞ�β ¼ 0; ð13Þ

where ½x; y�β ¼ xy − βyβ−1x and β ¼ id ⊗ γ0 ⊗ id. This
follows directly from a simple computation, which uses
β2 ¼ id:

0 ¼ ½½gDST; πLðaÞ�; πRðbÞ�
¼ βDSTπLðaÞπRðbÞ − πLðaÞβDSTπRðbÞ − πRðbÞβDSTπLðaÞ þ πRðbÞπLðaÞβDST

¼ βðDSTπLðaÞπRðbÞ − βπLðaÞβDSTπRðbÞ − βπRðbÞβDSTπLðaÞ þ βπRðbÞπLðaÞβDSTÞ
¼ β½½D; πLðaÞ�β; πRðbÞ�β:

V. CONCLUSIONS

Let us stress that the geometry of the standard model, as
discussed above, is not a product of spectral triples.
Nevertheless, it has interesting features, which we summa-
rize here with an outlook for the future research directions.
When restricted to the commutative algebra of real-

valued functions (and its complexification), we obtain
the even Lorentzian spectral triple with a real structure of
KO-dimension 6 [compatible with the signature (1,3)] and
with the Dirac operator satisfying the order-one condition.
On the other hand, the restriction of the spectral triple to

the constant functions over the Minkowski space gives a
Euclidean even spectral triple, which fails to be real. The
failure of the real structure to satisfy the commutation
relation with the (Krein-shifted) finite part of the Dirac
operator is tantamount to the appearance of the violation of
CP symmetry in the standard model.
Neither of the restrictions satisfies the spinc condition,

as in both cases, we still consider the full Hilbert space.
Yet the full spectral triple satisfies the spinc condition in
the following sense: the Clifford algebra generated by the
commutators of the Krein-shifted Dirac operator with
the representation πL of the algebra has, as the commutant,
the right representation of the algebra πR.
There are several possible ramifications of the above

observations. First is the disappearance of the product

structure; yet even if the triple is not a full product, then
possibly it can have some structure of a quotient "spectral
geometry." It will be interesting to classify all possible
covers and all Dirac operators for them. In the presented
spectral triple, the family of allowed Dirac operators that
satisfy the spinc condition is much closer to physical
reality as it does not include any color symmetry–breaking
operator unlike Ref. [7] and, moreover, the conditions are
exactly the same as for the Hodge duality. The failure of
the finite spectral triple to be real is then a geometric
interpretation of the CP-symmetry breaking in the stan-
dard model. Finally, the disappearance of the product
structure may have deep consequences for the spectral
action. We postpone the discussion of possible effects
on the physical parameters of the model for the forth-
coming work. It will be interesting to compare the
resulting Higgs mass (and other parameters) with both
the experimental value and ones determined in other
approaches. Further comparison with models going
beyond the standard model, like the Pati-Salam model
[26] (see also Ref. [27] for the link to pseudo-Riemannian
structures), is also an interesting direction for future
research.
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2.1.2 Bosonic spectral action

In the previous subsection, we have discussed the fermionic part of the spectral

action for the model, based upon a non-product type of noncommutative geometry,

that we propose as an alternative description of the Standard Model. Since most

of the features present in the physical model are already built up in this geomet-

ric description, we claim that also the bosonic part of the spectral action should

reproduce the right kinetic and interaction terms of the effective Lagrangian.

We start with the discussion of gauge transformations for our model and a

convenient parametrization for inner fluctuations of the Dirac operator. Again,

we are working with the Lorentzian framework, and the analysis is performed by

using the Krein-shift of the full Lorentzian Dirac operator. Since the real structure

is not present in our formulation of the model, we have to clearly distinguish

between the left and right representation, and both of them have to be taken into

account when we compute the fluctuations. We demonstrate that the unitary group

of this model is (U(1)× SU(2)× U(3)) /Z2, and after imposing a unimodularity

condition it further reduces to either (U(1)× SU(2)× U(3)) /Z6, the gauge group

of the Standard Model, or differs from it a by a finite factor, depending on the

choice for unimodularity we use.

Having described the fluctuations of the Dirac operator it is natural to proceed

with the computation of the bosonic spectral action as a next step. However,

as discussed in the introductory section, the fully Lorentzian framework for such

computation is not developed yet. Therefore we have to use a different strategy to

analyse this part of an action.

As a first step, we compute the action for the spatial part of the Krein-shifted

Dirac operator restricted to the situation when all gauge fields are static. In other
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words, we are using a certain type of dimension reduction, described e.g. in [134],

and eliminate the time from the considerations. The resulting operator is Hermi-

tian, its square is elliptic, so the usual Euclidean formalism for the computation

of the spectral action can be used. We demonstrate that the resulting effective

Lagrangian agrees with the static spatial part of the physical Standard Model.

This promising result motivates further studies. We then proceed wit the dis-

cussion of the full model but now using the Wick rotation implemented on the

level of the algebra of Pauli matrices: we replace σj by iσj, for j = 1, 2, 3, while σ0

remains unchanged. In this case the heat trace coefficients can be computed for the

operator D†
ωDω, where Dω is the Wick-rotated Lorentzian Dirac operator. Again,

after performing the computation of the spectral action, we compare the resulting

Lagrangian with the one for the physical Standard Model as well as with the one

obtained from the almost-commutative framework. To do so, we have to first ap-

ply the inverse of the Wick rotation to end up within the Lorentzian framework.

We find two differences between our model and the others. Firstly, the intriguing

topological terms in the electroweak sector appear. Since the original model had

the feature of breaking the CP symmetry, their appearance does not seem to be

so unexpected. The second difference is in the exact form of the Higgs potential.

The numerical value of one of the parameters differs from the one obtained in the

almost-commutative framework. Not only its absolute value is different but also

the sign is the opposite one. However, the detailed analysis of all coefficients in the

model and relations between them shows that this may not be an issue, provided

that certain axiom related to the positivity of moments of the function f , used for

the computation of the spectral action, can be relaxed. A rigorous mathematical

formulation of this problem requires further investigations, possibly within the fully
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Lorentzian framework.

Article below reprinted from: [A. Bochniak, A. Sitarz and P. Zalecki, Spec-

tral action and the electroweak θ-terms for the Standard Model without fermion

doubling, J. High Energ. Phys. 12, 142 (2021), DOI: 10.1007/JHEP12(2021)142.].
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1 Introduction

The Standard Model of Particle Physics is a powerful theory that gives a precise and
effective description of all fundamental forces apart from gravity. Its predictive power and
agreement with experimental results guarantee that it needs to remain the backbone of any
fundamental theory of particle interactions. Yet, in contrast to General Relativity, which
is deeply rooted in the geometry of space-time, the Standard Model only partially can be
explained similarly. The structure of gauge theory and the Yang-Mills action signifies that
indeed the geometry plays there a significant role. However, the appearance of a Higgs field
and the symmetry-breaking quartic potential are not directly implied by classical geometry.

The hint that the Standard Model has a more subtle structure came from noncom-
mutative geometry and the theory of spectral triples. Founded by Alain Connes to solve
significant mathematical problems related to the index theorem of Atiyah and Singer (see [1]
for a review), the theory is a well-structured non-trivial generalization of classical differ-
ential geometry that allows studying not only differentiable manifolds but also discrete
spaces, fractals and quantum deformations of spaces from a novel point of view. Inter-
estingly, the tools of noncommutative geometry allowed to construct models that explain
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the geometry of the Standard Model [2–4] (see also [5] and [6] for detailed discussion) and
its extensions [7–11]. Their structure is similar to Kaluza-Klein models yet with a finite
noncommutative algebra instead of the additional dimension of space-time. The geometry
of the entire enhanced space-time is determined by a Dirac operator that depends on the
metric and the gauge connections, and also includes the Higgs field, which plays a role of a
connection over the finite noncommutative component. The spectral action then gives the
full gravity and Yang-Mills action with the quartic Higgs potential and minimal couplings
between the Higgs and the gauge fields [12].

The story of the noncommutative model-building is, however, not yet complete as the
most accepted model is in the Euclidean signature and requires additional assumptions to
remove the possibility of the SU(3) symmetry breaking [13, 14] as well as an additional
projection onto the physical space of fermions (due to the fermion quadrupling in the
model) [15–17]. In the analysis of the Lorentzian case with slight modifications of the
spectral triple rules we proved that there exists a model without the fermion doubling
and with exact colour SU(3) symmetry [18]. Moreover, the non-product Dirac operator
satisfied a slightly modified first-order condition which is tantamount to the spinc one
under certain requirements for mass spectra of fermions. The CP-symmetry breaking in
the Standard Model was then geometrically explained as the lack of reality symmetry of
the finite component of the Dirac operator as witnessed by nonvanishing of the Wolfenstein
parameter and the CP-phase in the neutrino sector.

In the paper, we compute the spectral action for the model we presented in [18]. It
needs to be stressed that this model is not of the product-type geometry and therefore
the computations and results are not automatically identical to those performed in the
series of papers computing the spectral action [12, 19]. In addition, as we start with
the Lorentzian model we need to perform a Wick rotation to be able to use heat trace
techniques [20] or restrict the model to spatial and time-independent (static) components
of the fields. To check the consistency of the computations we perform both operations. The
new element of the spectral action, apart from slight differences in the relative coefficients,
is the appearance of topological theta terms for the gauge fields in the electroweak sector.
This is a characteristic new feature of this model, which is inherently chiral, especially that
such terms cannot appear in the spectral action of the product geometries.

2 The starting point: fermions and the algebra of the Standard Model

We begin by briefly reviewing the model as described in details in [18, 22]. The particle
content in the one-generation Standard Model can be conveniently parametrized in the
following form:

Ψ =




νR u1
R u2

R u3
R

eR d1
R d2

R d3
R

νL u1
L u2

L u3
L

eL d1
L d2

L d3
L



∈M4(HW ). (2.1)
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Every entry of the above matrix is a Weyl spinor (from HW ) over the Minkowski space
M1,3. The algebra A is taken to consist of (smooth) C⊕H⊕M3(C)-valued functions over
M1,3. We choose its left and right real representations:

πL(λ, q,m)Ψ =



λ

λ̄

q


Ψ, πR(λ, q,m)Ψ = Ψ

(
λ̄

m†

)
,

where λ, q and m are complex, quaternion and M3(C)-valued functions, respectively. Since
left and right multiplications commute, the zeroth-order condition is satisfied, i.e.

[πL(a), πR(b)] = 0

for all a, b ∈ A. It is convenient to encode local linear operator acting on the particle
content of the model, at every point of M1,3, as an element of M4(C) ⊗M2(C) ⊗M4(C),
where the first and the last matrices act by multiplication from the left and from the right,
respectively, while the middle M2(C) matrix acts on the components of the Weyl spinor.
For the algebra A this component is, of course, identity matrix.

Using this notation, the full Lorentzian Dirac operator of the Standard Model can be
written of the form,

DSMΨ =




iσ̃µ∂µ
iσ̃µ∂µ

iσµ∂µ
iσµ∂µ




︸ ︷︷ ︸
D

Ψ +DFΨ, (2.2)

where σ0 = 12 = σ̃0 and σ̃i = −σi, the latter being standard Pauli matrices. DF is a finite
endomorphism of the Hilbert space M4(HW ).

In [18] the Krein-shifted full Dirac operator of the Standard Model, D̃SM = βDSM,
where

β =
(

12
12

)
⊗ 12 ⊗ 14, (2.3)

was discussed in details. The Krein-shifted manifold component of the Lorentzian Dirac
operator D̃ in the local Cartesian coordinates over R4, with a flat metric, is

D̃ =
(

12
02

)
⊗ iσµ∂µ ⊗ 14 +

(
02

12

)
⊗ iσ̃µ∂µ ⊗ 14, (2.4)

whereas the Krein-shifted discrete part of the Dirac operator is,

D̃F =
(

Ml

M †l

)

︸ ︷︷ ︸
Dl

⊗12 ⊗ e11 +
(

Mq

M †q

)

︸ ︷︷ ︸
Dq

⊗12 ⊗ (14 − e11), (2.5)

where Ml,Mq ∈M2(C).

– 3 –
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The Krein-shifted Dirac operator and the algebra were proven to satisfy the generalized
order-one condition, that is for all a, b ∈ A,

[
πR(a), [D̃SM, πL(b)]

]
= 0,

[
πL(a), [D̃SM, πR(b)]

]
= 0. (2.6)

Note that although the usual order-one condition, which is implemented with the real
structure, can also be written in this form, the above generalized version extends it to the
case of Riemannian manifolds, which are not spin [23].

The Lorentzian spectral triple for the signature (1, 3) has the standard chirality Z2-
grading γ and the charge conjugation operator, J ,

γ =
(

12 0
0 −12

)
, J = iγ2 ◦ cc = i

(
0 σ2

−σ2 0

)
◦ cc, (2.7)

where cc denotes the usual complex conjugation of spinors. The construction can be easily
generalized for the three families of leptons and quarks by enlarging the Hilbert space
diagonally, i.e. by taking M4(HW ) ⊗ C3 with the diagonal representation of the algebra.
The matrices Ml and Mq in (2.5) are no longer in M2(C) but in M2(C) ⊗ M3(C). Its
standard presentation for the physical Standard Model is

Ml =
(

Υν 0
0 Υe

)
, Mq =

(
Υu 0
0 Υd

)
,

where Υe and Υu are chosen diagonal with the masses of electron, muon, and tau and
the up, charm, and top quarks, respectively, and Υν and Υd can be diagonalised by the
Pontecorvo-Maki-Nakagawa-Sakata mixing matrix (PMNS matrix) U and the Cabibbo-
Kobayashi-Maskawa mixing matrix (CKM matrix) V , respectively:

Υν = UΥ̃νU
†, Υd = V Υ̃dV

†.

The matrices Υ̃ν , Υ̃d provide (Dirac) masses of all neutrinos and down, strange, and bottom
quarks.

As it was demonstrated in [18] the model has interesting algebraic properties, like the
Morita duality (which means that the generalized Clifford algebra is a full commutant of
the algebra A) provided that both pairs of matrices (Υν ,Υe) and (Υu,Υd) have pairwise
different eigenvalues. Furthermore, without referring to additional symmetries or assump-
tions the model preserves the SU(3) strong symmetry and allows for the natural breaking
of the CP-symmetry, which is linked to the non-reality of the mixing matrices. This is,
on the level of the algebra of the model, equivalent to the failure of the finite part of the
Krein-shifted Dirac operator to be J -real (see [18] for details).

2.1 The gauge transformations and the Higgs

In this section we extend the model by introducing the fluctuations of the Dirac opera-
tor, that is a family of operators obtained from D̃SM by perturbing them with one-forms,
that originate from commutators with the Dirac operator. Here, both left and right rep-
resentations will contribute to the gauge transformations and the fluctuations of the Dirac
operator.

– 4 –
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A gauge transformation of physical fields is a unitary transformation of the form,

ULR = πL(U)πR(U), (2.8)

for a unitary element U of the algebra A, so that the gauge-transformed Dirac operator
becomes:

D̃SM
U

= πL(U)πR(U)D̃SMπR(U †)πL(U †), (2.9)

which, after using the order-zero and order-one conditions, can be rewritten as

D̃SM
U

= D̃SM + πL(U)
[
D̃SM, πL(U †)

]
+ πR(U)

[
D̃SM, πR(U †)

]
. (2.10)

The unitary group of the finite algebra is U(1) × SU(2) × U(3), while the unitaries of the
form ULR are elements of the group being a quotient of this group by its diagonal normal
subgroup Z2 = {±(1,12,13)}.

To parametrize the fluctuations we first start with computing left and right ones sep-
arately: ∑

j

πL(aj)[D̃SM, πL(bj)],
∑

j

πR(aj)[D̃SM, πR(bj)], (2.11)

where aj , bj ∈ A = C∞(R4,C ⊕ H ⊕M3(C)), and the representations πL and πR are of
the form:

πL(a) =



λa

λa
qa




︸ ︷︷ ︸
aL

⊗12 ⊗ 14, πR(a) = 14 ⊗ 12 ⊗
(
λa

m†a

)

︸ ︷︷ ︸
aR

(2.12)

where λa ∈ C∞(R4), qa ∈ C∞(R4,H) and ma ∈ C∞(R4,M3(C)).
We first notice that [D̃F , πR(b)] = 0 from the very definition of the representation

and the structure of this Dirac operator. Therefore, the only contribution from the right
fluctuations can be parametrized as

(
12

02

)
⊗ σµ ⊗

(
A′µ

Gµ

)
+
(

02
12

)
⊗ σ̃µ ⊗

(
A′µ

Gµ

)
, (2.13)

where A′µ = i
∑
j
λaj (∂µλbj ) and Gµ = i

∑
j
m†aj

(
∂µm

†
bj

)
.

Now, we compute the left fluctuations. Starting with the ones following from the D̃
part of the Dirac operator we immediately get

∑

j

πL(aj)[D̃, πL(bj)] = ARµ ⊗ σµ ⊗ 14 +ALµ ⊗ σ̃µ ⊗ 14, (2.14)

with

ARµ =



Aµ

A′µ
02


 , ALµ =

(
02
Wµ

)
, (2.15)
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where Aµ = i
∑
j λaj (∂µλbj ), A′µ is as previously, and Wµ = i

∑
j qaj (∂µqbj ). Here Aµ and

A′µ do not describe the single (electromagnetic) U(1) gauge field, but contain also the Z
boson counterpart.

Imposing the selfadjointness condition we immediately get A′µ = −Aµ and infer that
Wµ is indeed an element of isu(2) (as it is enforced to be a real linear combination of Pauli
matrices). Similarly, we deduce that Gµ is a U(3) gauge field.

It remains to take into account the contribution from D̃F . By a straightforward com-
putation we get

∑

j

πL(aj)[D̃F , πL(bj)] = φl ⊗ 12 ⊗ e11 + φq ⊗ 12 ⊗ (14 − e11), (2.16)

where
φr =

∑

j

aLj [Dr, b
L
j ], r = l, q. (2.17)

Since both matrices Ml and Mq are diagonal, they commute with diag(λ, λ). Denot-
ing by

Φ =
∑

j

(
λaj

λaj

)[
qbj −

(
λbj

λbj

)]
,

we can parametrize those fluctuations, under the assumption of selfadjointness, as:
(

MlΦ
Φ†M †l

)
⊗ 12 ⊗ e11 +

(
MqΦ

Φ†M †q

)
⊗ 12 ⊗ (14 − e11). (2.18)

As a result, the fluctuations coming from all the terms can be parametrize as

ω = Aµe11 ⊗ σµ ⊗ (14 − e11)− 2Aµe22 ⊗ σµ ⊗ e11
−Aµe22 ⊗ σµ ⊗ (14 − e11)−Aµ(e33 + e44)⊗ σ̃µ ⊗ e11

+
(

02
Wµ

)
⊗ σ̃µ ⊗ 14

+
(

12
02

)
⊗ σµ ⊗

(
01

Gµ

)
+
(

02
12

)
⊗ σ̃µ ⊗

(
01

Gµ

)

+
(

MlΦ
Φ†M †l

)
⊗ 12 ⊗ e11 +

(
MqΦ

Φ†M †q

)
⊗ 12 ⊗ (14 − e11).

(2.19)

We denote the fluctuated Dirac operator by D̃SM
ω

= D̃SM + ω.
For a unitary element U ≡ (u1, u2, u3) ∈ U(1) × SU(2) × U(3) the gauge-transformed

fluctuated Dirac operator is of the form

D̃SM
ωU

= πL(U)πR(U)D̃SM
ω
πR(U †)πL(U †). (2.20)

The gauge transformation can be therefore implemented by

ω 7−→ ωU = πL(U)πR(U)ωπR(U †)πL(U †)

+ πL(U)
[
D̃SM, πL(U †)

]
+ πR(U)

[
D̃SM, πR(U †)

]
.
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As a result, the fields Aµ,Wµ, Gµ,Φ transform accordingly:

Aµ 7−→ Aµ + u1(∂µu1),

Wµ 7−→ u2Wµu
†
2 + u2(∂µu†2),

Gµ 7−→ u3Gµu
†
3 + u3(∂µu†3),

12 + Φ 7−→
(
u1

u1

)
(12 + Φ)u†2.

(2.21)

We remark that in the above derivation the crucial role was played by the fact that
the representation of U(1) part of the gauge group commutes with the mass and mixing
matrices.

It is known that the gauge group of the Standard Model should contain SU(3) rather
than U(3). This can be achieved with a further condition, the unimodularity of the rep-
resentation, which, however, can be imposed in different ways. In particular, let us ob-
serve that the left action of the group is unimodular from the beginning. For the right
representation, one could require either the condition that it is unimodular on each fun-
damental component (chiral lepton and quark) or in the full representation, including all
chiral fermions and families. In the first case, the unimodularity condition is equivalent to
u1 detu3 = 1, whereas in the second case it becomes (u1 detu3)12 = 1. In the first case,
the resulting group is exactly the group of the Standard Model,

(U(1)× SU(2)× SU(3)) /Z6,

whereas in the latter case it is the one described in [6, proposition 11.4], which differs
from the gauge group of the Standard Model by a finite factor. Independently, their
Lie algebras agree and the finite difference does not affect the structure of the gauge
fields. The unimodularity condition on the Lie algebra, instead of the Lie group, level of
perturbation means that the trace of a perturbation has to vanish. This condition results
in Tr(Gµ) = Aµ. We therefore introduce the traceless gauge field G′µ = Gµ − 1

3Aµ13 and
then in the perturbations we can replace Gµ by G′µ + 1

3Aµ13, where now G′µ is assumed to
be a SU(3) gauge field. By a slight abuse of notation we will use Gµ instead of G′µ in the
rest of the paper.

3 The spectral action

The spectral action, as defined originally by Chamseddine and Connes [24], makes sense for
elliptic operators on Euclidean manifolds and, in the noncommutative generalisation, for
spectral triples. To make contact with physics the usual method is to compute the spectral
action in the Euclidean setup and then to Wick-rotate it to the Lorentzian signature. Yet
this procedure starts directly from the Euclidean formulation of the model, which may
not be equivalent to the Lorentzian. On the other hand, it is feasible to start with the
genuine Lorentzian spectral triple and then look either for the appropriate spectral action
principle (the first steps towards it have already been done in [25]) or use the Wick-rotated
Lorentzian operator (so that then we can work with an elliptic operator for which the
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spectral action is computable) and then Wick-rotate the result back to the Lorentzian
case. It remains an interesting general question whether both procedures give the same
result. Since the results of [25] have not been so far extended to Dirac-type operators,
we proceed with the latter procedure, however, to have another check of the result we
compute the spectral action of “static and spatial” part of the Dirac operator, which is an
elliptic operator (we explain the procedure in subsection 3.2). Finally, let us remark that
we perform computations on a flat manifold, which could be taken as a compact 4-torus,
however, since all Gilkey-Seeley-DeWitt coefficients are local the results are extendable to
the physical action on a Minkowski space.

In the considerations so far (see e.g. [6] and references therein), the spectral action
for the Standard Model was computed for the Euclidean model with fermion doubling.
Moreover, the assumed bare Dirac operator was of the product type and therefore its square
was simply the sum of the squares of the Dirac operators on manifold component and on
the discrete component. While this strategy can be justified by the arguments of covariance
and geometric character of the action, the relative coefficients and the proportions between
them may in general differ, when one considers the Lorentzian and explicitly chiral Dirac
operator.

Of course, the best strategy would be to apply a genuine Lorentzian approach (see [25]),
however, this appears to be at the moment restricted only to scalar operators and not Dirac-
type operators. Therefore we propose two simple, computable methods to obtain an insight
into the action of the model, which is motivated by spectral methods.

The first one assumes that we restrict ourselves to the static and spatial case, computing
the terms of the spectral action for the Krein-shifted Dirac operator that is restricted to
the spatial part and with the gauge fields that arise exclusively through static (time-
independent) gauge transformations. Such restricted Dirac operator is already a hermitian
elliptic operator and one can easily compute the heat trace coefficients of its square. This
shall recover the action of the model for the time-independent fields, which is invariant
under static gauge transformations. However, one cannot expect that all terms of the
action will be present, and their coefficients correct.

The second method takes as the input the Wick-rotated Lorentzian Dirac operator
Dw. Such operator is elliptic, as its continuous part is just the usual Wick-rotated Dirac
operator (with gauge fields) over the flat space-time. However, the discrete part of the
operator (which is not Krein-shifted) is alone not hermitian but only normal. Nevertheless
one can still compute the heat trace coefficients of D†wDw and then, using the Wick rotation
back to the Lorentzian case recover the action functional.

In what follows we assume that we work on a flat compact manifold (torus) so all cur-
vature terms vanish from the spectral action, and we are using a physical parametrisation
of fields, described next.

3.1 Spectral action — physical parametrization

Let us now write explicitly the full spectral action in terms of Yukawa parameters and
Higgs field in the case of one generation of fermions. Since Φ is a quaternionic field it can
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be parametrize as

Φ =
(
φ1 φ2
−φ2 φ1

)
,

where φ1, φ2 are two complex fields. Then

Φl = Ml(1 + Φ) =
(

ΥνH1 ΥνH2
−ΥeH2 ΥeH1

)
,

Φq = Mq(1 + Φ) =
(

ΥuH1 ΥuH2
−ΥdH2 ΥdH1

)
,

where we introduced the Higgs doublet:

H ≡
(
H1
H2

)
=
(

1 + φ1
φ2

)
.

3.2 The spectral action for the full static SM

We consider here the Krein-shifted operator for the static simplified model, computing the
coefficients of the spectral action for its spatial part only, which is an elliptic operator.
Of course, this will not give the full four-dimensional spectral action, however, we shall at
least recover a part of it, valid for the spatial component of all fields under the assumption
that they are time-independent. The procedure can be understood as follows. We first
restrict the Krein-shifted Dirac operator, together with all its gauge fluctuations, to the 3-
dimensional manifold, obtaining an elliptic operator both for the leptonic and quark sectors.
Then we perform the standard computation of the Gilkey-Seeley-DeWitt coefficients, using
the standard formulae [20], however, we change the dimension-related constants so that
they correspond to the four-dimensional case. Equivalently, this can be seen as the spectral
action for the product geometry of the spatial Krein-shifted Dirac operator over a three-
dimensional Euclidean manifold with a circle of radius 1, for all fluctuations, which do not
depend on the coordinate of the circle and resembles the dimensional reduction procedure
as presented in [21].

The fluctuated Krein-shifted static Dirac operator for the Standard Model splits into
the lepton and the quark sector with the lepton part,

D̃L = i

(
12
−12

)
⊗ σj∂j +

(
Φl

Φ†l

)
⊗ 12

+Aj

(
σ3 − 12

12

)
⊗ σj −

(
02

Wj

)
⊗ σj ,

(3.1)

where we have used the identification M4(C)⊗M2(C)⊗C ∼= M4(C)⊗M2(C) and therefore
omitted the third component in the expression above.

This reproduces the correct hypercharges in the leptonic sector: 0,−2,−1,−1. We
remark that for the left particles, the hypercharges are defined as coefficients in terms
containing σ̃j instead of σj .
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For the quark sector we have:

D̃Q = i

(
12
−12

)
⊗ σj∂j ⊗ 13 +

(
Φq

Φ†q

)
⊗ 12 ⊗ 13

+Aj


σ

3 + 1
312

−1
312


⊗ σj ⊗ 13

−
(

02
Wj

)
⊗ σj ⊗ 13 +

(
12
−12

)
⊗ σj ⊗Gj .

(3.2)

Again, it gives correct hypercharges for quarks: 4
3 ,−2

3 ,
1
3 ,

1
3 . Contributions to the action can

be computed separately for the leptonic and the quark sector. The detailed computations
are in the appendix A, here we present the final result in the physical parametrization.

3.2.1 The full spectral action

The asymptotic expansion of the spectral action for models on a four dimensional space
with a fluctuated Dirac operator Dω is given by

Tr
(
f

(
Dω

Λ

))
∼ a4f(0) + 2

∑

0≤k<4
k even

f4−kak
Λ4−k

Γ
(

4−k
2

) +O(Λ−1), (3.3)

and reduces simply to

Tr
(
f

(
Dω

Λ

))
∼ a4f(0) + 2a0f4Λ4 + 2f2Λ2a2 +O(Λ−1),

where ak are the so-called Gilkey-Seeley-DeWitt coefficients and can be computed explicitly
— see e.g. [6, 20] for the detailed discussion. Here f is a sufficiently regular function (see
e.g. [26, chapter 2]) with fk being its kth moment, and Λ is the cut-off parameter.

We start with the model containing only one generation of particles. In this case we get

a2 = − κ

4π2a
∫
d4x|H|2,

a4 = κ

8π2

∫
d4x

[
b|H|4 + aTr|DjH|2 + 20

9 F
2 + 2

3TrW 2 + 2
3TrG2

]
,

where

a = |Υν |2 + |Υe|2 + 3|Υu|2 + 3|Υd|2,
b = |Υν |4 + |Υe|4 + 3|Υu|4 + 3|Υd|4,

and κ is the normalization of the trace.
In case of three generations we have to change the above coefficients into

a = Tr(Υ†νΥν) + Tr(Υ†eΥe) + 3Tr(Υ†uΥu) + 3Tr(Υ†dΥd),

b = Tr(Υ†νΥν)2 + Tr(Υ†eΥe)2 + 3Tr(Υ†uΥu)2 + 3Tr(Υ†dΥd)2,
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and we have to multiply the terms with field curvatures by a factor of 3. As a result

a4 = κ

8π2

∫
d4x

[
b|H|4 + aTr|DjH|2 + 20

3 F
2 + 2TrW 2 + 2TrG2

]
.

Taking κ = 4 and ignoring the term related to the gravitational constant (i.e. the one
∼ Λ4) we end up with a model with an effective Lagrangian L = LHiggs + Lgauge, where

LHiggs = bf(0)
2π2 |H|

4 − 2f2Λ2a

π2 |H|2 + af(0)
2π2 Tr|DjH|2,

Lgauge = f(0)
π2

(10
3 F

2 + TrW 2 + TrG2
)
.

The above result is in agreement with the one in [6, proposition 11.9], for c = d = e = 0
in the notation used therein. Furthermore, notice also that this is consistent (up to an
irrelevant global factor) with taking the static part of the Lorentzian Lagrangian for the
Standard Model. Indeed, we have

−FµνFµν + |DµH|2−V (H) = −2F0jF
0j −FjkF jk +D0H

†D0H −DjH
†DjH −V (H)

= −FjkFjk −DjH
†DjH −V (H) = −

(
FjkFjk +DjH

†DjH +V (H)
)
.

In particular any prediction related to the mass of the Higgs field remains unchanged.

3.3 Wick rotated model

Let us start with the full Krein-shifted Dirac operator in the leptonic sector,

D̃L = i

(
12 ⊗ σµ

12 ⊗ σ̃µ
)
∂µ +Aµ

(
(σ3 − 12)⊗ σµ

−12 ⊗ σ̃µ
)

+
(

04
Wµ ⊗ σ̃µ

)
+
(

Φl

Φ†l

)
⊗ 12.

Its Lorentzian counterpart is of the form

DL = i

(
12 ⊗ σ̃µ

12 ⊗ σµ
)
∂µ +Aµ

(
−12 ⊗ σ̃µ

(σ3 − 12)⊗ σµ
)

+
(

Wµ ⊗ σ̃µ
04

)
+
(

Φ†l
Φl

)
⊗ 12.

In what follows we perform a Wick rotation on the level of the algebra of Pauli matrices:
σj → iσj and consequently σ̃j → −iσj , while the σ0 remains unchanged. The Wick-rotated
Dirac operator in the leptonic sector is then of the form

DL,w = i

(
12

12

)
⊗ 12∂0 + i

(
−i12

i12

)
⊗ σj∂j

+A0

(
−12

(σ3 − 12)

)
⊗ 12 +Aj

(
i12

i(σ3 − 12)

)
⊗ σj

+
(

W0
02

)
⊗ 12 −

(
iWj

02

)
⊗ σj +

(
Φ†l

Φl

)
⊗ 12.

(3.4)
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For the quark sector we have

D̃Q = i

(
12 ⊗ σµ

12 ⊗ σ̃µ
)
⊗ 13∂µ +Aµ



(
σ3 + 1

312
)
⊗ σµ

1
312 ⊗ σ̃µ


⊗ 13

+
(

12 ⊗ σµ
12 ⊗ σ̃µ

)
⊗Gµ +

(
02

Wµ ⊗ σ̃µ
)
⊗ 13 +

(
Φq

Φ†q

)
⊗ 12 ⊗ 13.

(3.5)

Then

DQ = i

(
12 ⊗ σ̃µ

12 ⊗ σµ
)
⊗ 13∂µ +Aµ




1
312 ⊗ σ̃µ(

σ3 + 1
312

)
⊗ σµ


⊗ 13

+
(

12 ⊗ σ̃µ
12 ⊗ σµ

)
⊗Gµ +

(
Wµ ⊗ σ̃µ

04

)
⊗ 13 +

(
Φ†q

Φq

)
⊗ 12 ⊗ 13,

(3.6)

and after performing the Wick rotation we get

DQ,w = i

(
12

12

)
⊗ 12 ⊗ 13∂0 + i

(
−i12

i12

)
⊗ σj ⊗ 13∂j +

(
Φ†q

Φq

)
⊗ 12 ⊗ 13

+A0




1
312

σ3 + 1
312


⊗ 12 ⊗ 13 + iAj


 −1

312

σ3 + 1
312


⊗ σj ⊗ 13

+
(

12
12

)
⊗ 12 ⊗G0 +

(
−12

12

)
⊗ σj ⊗ iGj

+
(

W0
02

)
⊗ 12 ⊗ 13 +

(
−iWj

02

)
⊗ σj ⊗ 13.

(3.7)

Again, all further details of the computations are in the appendix B, and in what follows
we present only the final expressions for the Wick-rotated model.

3.3.1 The full spectral action
We consider now the full model with three generations of particles. In this case, using the
above results, we get

a2 = 3κ
4π2a

∫
d4x|H|2, (3.8)

and

a4 = κ

8π2

∫
d4x

[
b|H|4 − aTr|DµH|2 + 20

3 F
2 + 2Tr(W 2) + 2Tr(G2)

+ 12εjklFjkF0l − 6εjklTr(WjkW0l)
]
,

(3.9)

where the parameters a and b are as before:

a = Tr(Υ†νΥν) + Tr(Υ†eΥe) + 3Tr(Υ†uΥu) + 3Tr(Υ†dΥd),

b = Tr(Υ†νΥν)2 + Tr(Υ†eΥe)2 + 3Tr(Υ†uΥu)2 + 3Tr(Υ†dΥd)2.
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Notice that by construction these parameters are non-negative. Taking κ = 4 and
considering the first terms of the asymptotic expansion (and neglecting the gravitational
terms) we end up with the following Lagrangians for gauge fields and the field H:

Lgauge = f(0)
π2

(10
3 F

2 + Tr(W 2) + Tr(G2) + 6εjklFjkF0l − 3εjklTr(WjkW0l)
)
, (3.10)

LH = bf(0)
2π2 |H|

4 + 6f2Λ2

π2 a|H|2 − af(0)
2π2 Tr|DµH|2. (3.11)

Since the Wick rotation was performed in three spatial directions on the level of Pauli
algebra, as described in the discussion preceding eq. (3.4), when going back from the
Minkowski signature (1, 3) into the Euclidean one we have to change spatial derivatives
and coordinates according to ∂j → −i∂j and Aj → −iAj , respectively, and in order to
preserve the spin structure we have to change the Minkowski structure constants εjklM into
their Euclidean counterparts: εjklE = −iεjklM . As a result

−FM
µνF

µν
M = −2FM

0j F
0j
M − FM

jkF
jk
M = 2FM

0j F
M
0j − FM

jkF
M
jk

→ −2FE
0jF

E
0j − FE

jkF
E
jk = −FE

µνF
E
µν ,

and
(DµH

†
M)(DµHM) = (D0H

†
M)(D0HM)− (DjH

†
M)(DjHM)

→ (D0H
†
E)(D0HE) + (DjH

†
E)(DjHE) = (DµH

†
E)(DµHE),

(3.12)

so that for these terms we have

−F 2
M + |DµHM|2 − V (HM)→ −

(
F 2

E − |DµHE|2 + V (HE)
)

in a complete agreement with (3.10) and (3.11). The global minus sign (together with the
additional −i factor from the measure) is related to the definition of an Euclidean action:
iSM = −SE. Next, let us consider the remaining term:

εµνρσM FM
µνF

M
ρσ = 4εjklM FM

0j F
M
kl → −4εjklE FE

0jF
E
jk.

Taking into account the additional global sign from the identification of iSM with −SE, we
finally see that the Lorentzian counterpart of 6εjklFjkF0l − 3εjklTr (WjkW0l) is

3
2ε

µνρσFµνFρσ −
3
4ε

µνρσTr (WµνWρσ) .

Therefore, the spectral action for this model contains terms that can be interpreted as
the so-called θ-terms in the electroweak sector [27–29]. We remark that from the above
derivation of the spectral action not only the presence of such terms is deduced but also
the numerical value of the electroweak vacuum angle is fixed by the model. The presence
of such terms was linked with the CP-violation [28], especially for the discussion of the
baryogenesis process. In contrast to the usual considerations in the physical formulation
of the Standard Model, no CP-violating θ-term in the QCD sector is present here. It
will be interesting to see what are the physical limitations, e.g. on the energy scales on
which such model is valid, from the perspective of the presence of the electroweak θ-terms.
The CP-violation was present in this model also on the level of algebra by the lack of the
J -symmetry [18].
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We remark that the explicit form of the potential V (H) differs from the one in the
standard derivation [6], where the coefficient in the quadratic term |H|2 contained −2f2
instead of 6f2, which we have in the present model. In the usual formulation, f is assumed
to be, besides the others, a non-negative on the positive real half-line, so then f2 is also non-
negative therein. If we would not allow for any relaxation of this principle, our model will
not predict the Higgs mechanism, or in other words, the model could be valid only in a sector
with the Higgs potential of the form |H|4 + b1|H|2 + b2 with positive b1, b2, i.e. the Higgs
potential will not possess a non-trivial minimum. On the other hand, having the possibility
of using function f which has a negative second moment gives rise to effective action for the
Standard Model with the Higgs mechanism implemented in a completely similar manner as
in the usual product-like almost-commutative geometry [6]. Since all the derivations were
made on the algebraic level we could, by linearity, extend the applicability of the usual
methods into the case with f being a difference of two positive functions. However, the
discussion of the analytical aspects is required to establish the range of validity of these
computational methods — see [26] for some further discussion of these aspects which are
beyond the scope of this paper.

Allowing for the negative value of f2 there is no further difference in the numerical
value of the Higgs mass, which can be computed from the derived Lagrangian using the
standard tools based on the renormalization group equation [6, 12]. This is because the
difference in the numerical value of f2 in the coefficient for the |H|2 term does not affect
any relation between the mass of the W boson, the Higgs vacuum expectation value v and
the coupling constant g2 for theW boson field. Of course, the constant f2 appears in other,
purely gravitational terms, which have been deliberately neglected in these computations.
Certainly, the relative sign between the cosmological term and the Einstein-Hilbert term
is significant for gravity, however, this depends on another constant f4, which contributes
to the factor in front of the cosmological term. In the usual Einstein-Hilbert action the
signs of these two terms are opposite, which is consistent with our results provided that
f4 is positive. The only potential problem for the Euclidean action is its overall positivity,
yet this may depend on the overall sign, which depends on the Wick-rotation scheme. We
hope that the question of relative signs and spectral action expansion coefficients for the full
Lorentzian model will be effectively tackled by extending the results of [25] to Dirac-type
operators.

4 Conclusions and outlook

The presented noncommutative geometric model describing the particle interaction appears
to be the closest to the observed Standard Model. The derived bosonic spectral action
gives all correct terms and, in addition, new, topological θ-terms. While the latter has no
significance for the dynamics of the model, it may play a role in the quantum effects for the
electroweak sector. These terms are, in principle, not excluded and have been discussed in
literature [27–29]. The result signifies also that computing the spectral action for the Wick-
rotated Lorentzian Dirac operator is important. Possibly, the next step shall be to compute
the genuine Lorentzian spectral action using the tools that are at present available for the
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Laplace-type operators [25]. Furthermore, possible relations of non-product geometries
with bundle-like structures over noncommutative manifolds [30] as well to the inclusion of
gravity for this non-product geometry (see [31] for a link between nonproduct geometries
and gravity) shall also be explored and examined. Finally, it shall be interesting to see
possible extensions of the model, both in the direction of scalar conformal modifications
that can help to fix the Higgs mass as well as extensions of the Pati-Salam type [32, 33].

A The static spectral action

A.1 Leptonic sector

In the leptonic sector we have

D̃L
2 = −(14 ⊗ 12)∆− aj∂j − b, (A.1)

where,

aj = −2i
(
Aj

(
σ3 − 12

−12

)
+
(

02
Wj

))
⊗ 12, (A.2)

b = −
(

ΦlΦl
†

Φl
†Φl

)
⊗ 12 −AjAk

(
2(12 − σ3)

12

)
⊗ σjσk

−
(

02
WjWk

)
⊗ σjσk +

(
ΦlWj

WjΦl
†

)
⊗ σj + 2

(
02

Wj

)
Aj ⊗ 12

− i
(

∂jΦl

−∂jΦ†l

)
⊗ σj − i

(
02

∂jWk

)
⊗ σjσk

− i
(
σ3 − 12

−12

)
∂jAk ⊗ σjσk −

(
σ3Φl

Φl
†σ3

)
Aj ⊗ σj .

(A.3)

As a result, following the notation of [20], we have ωj = 1
2a

j , so that

Ωij = ∂iωj − ∂jωi + ωiωj − ωjωi

= −iFij
(
σ3 − 12

−12

)
⊗ 12 − i

(
02

Wij

)
⊗ 12,

(A.4)

with
Fij = ∂iAj − ∂jAi, Wij = ∂iWj − ∂jWi − i[Wi,Wj ]. (A.5)

Next we compute,

E = b− ∂jωj − ωjωj

= −
(

ΦlΦ†l
Φ†lΦl

)
⊗ 12 − i

(
∂jΦl

−∂jΦ†l

)
⊗ σj

+ 1
2

(
02

Wjk

)
⊗ εjklσl + 1

2Fjk

(
σ3 − 12

−12

)
⊗ εjklσl

−Aj
(

σ3Φl

Φ†lσ3

)
⊗ σj +

(
ΦlWj

WjΦ†l

)
⊗ σj .

(A.6)
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We get then
Tr(E) = −4κTr(Φ†lΦl), (A.7)

and furthermore,
Tr(ΩijΩij) = −2κ

(
6F 2 + Tr(W 2)

)
, (A.8)

where κ is the normalization of the trace (i.e. everything within the bracket is computed
for the unnormalized trace) and W 2 = WjkWjk. Moreover,

κ−1Tr(E2) = 4Tr(Φ†lΦl)2 + 4Tr[(∂jΦ†l )(∂jΦl)] + 4A2Tr(Φ†lΦl) + 4Tr(WjWjΦ†lΦl)

+ 4iAjTr
[
((∂jΦl)Φ†l − Φl(∂jΦ†l ))σ

3
]
− 4iTr

[
(Φ†l (∂jΦl)− (∂jΦ†l )Φl)Wj

]

− 8AjTr
(
Φ†lσ

3ΦlWj

)
+ 6F 2 + Tr(W 2).

(A.9)

As a result, in the leptonic sector we have

a2 = 1
(4π)2

∫
d4xTrE = − κ

4π2

∫
d4xTr(Φ†lΦl),

a4 = 1
16π2

1
12

∫
d4x

(
6Tr(E2) + Tr(ΩijΩij)

)

= κ

48π2

∫
d4x

[
6
(
Tr(Φ†lΦl)2 + Tr[(∂jΦ†l )(∂jΦl)] +A2Tr(Φ†lΦl)

+Tr(WjWjΦ†lΦl) + iAjTr
[
((∂jΦl)Φ†l − Φl(∂jΦ†l ))σ

3
]

−iTr
[
(Φ†l (∂jΦl)− (∂jΦ†l )Φl)Wj

]
− 2AjTr

(
Φ†lσ

3ΦlWj

))

+6F 2 + Tr(W 2)
]
.

(A.10)

Using the parametrization from the section 3.1 in this sector we then have

Φ†lΦl =
(
|Υν |2|H1|2 + |Υe|2|H2|2 |Υν |2H1H2 − |Υe|2H2H1
|Υν |2H2H1 − |Υe|2H1H2 |Υν |2|H2|2 + |Υe|2|H1|2

)
,

and as a result
a2 = − κ

4π2 (|Υe|2 + |Υν |2)
∫
d4x |H|2.

Furthermore we have

Tr(Φ†lΦl)2 = (|Υν |4 + |Υe|4)|H|4,
Tr
[
(∂jΦ†l )(∂jΦl)

]
= (|Υν |2 + |Υe|2) |∂jH|2,

(AjAj)Tr(Φ†lΦl) = (AjAj)(|Υν |2 + |Υe|2) |H|2.

Next, we decompose the W field in terms of Pauli matrices,

Wj = Wj,1σ
1 +Wj,2σ

2 +Wj,3σ
3,

so that
Tr(WjWjΦ†lΦl) = (WjWj)(|Υν |2 + |Υe|2)|H|2.
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Next, we compute

iAjTr
[
((∂jΦl)Φ†l −Φl(∂jΦ†l ))σ

3
]
=iAj(|Υν |2 + |Υe|2)(H†∂jH−∂jH†H),

−iTr
[
(Φ†l (∂jΦl)−(∂jΦ†l )Φl)Wj

]
=−i(|Υν |2 + |Υe|2)

[
Wj,3

(
H1∂jH1−H1∂jH1−H2∂jH2 +H2∂jH2

)

+(Wj,1− iWj,2)(H2∂jH1−H1∂jH2)

+(Wj,1 + iWj,2)(H1∂jH2−H2∂jH1)
]
,

−2AjTr
[
Φ†lσ

3ΦlWj

]
=−2Aj(|Υν |2 + |Υe|2)

[
(Wj,1− iWj,2)H1H2

+(Wj,1 + iWj,2)H1H2 +Wj,3(|H1|2−|H2|2)
]
.

Let us now verify whether these terms can be written using the covariant derivative of
the Higgs doublet,

DjH = ∂jH + iWjH − iAjH.

We check,

Tr|DjH|2 = Tr
[|∂jH|2 + i(∂jH†WjH −H†Wj∂jH)

+ iAj(H†∂jH − ∂jH†H)− 2AjH†WjH +WjWj |H|2 +A2|H|2].

The only terms that are potentially different that the ones in the coefficient a4 are

2AjTr(H†WjH), iTr(∂jH†WjH −H†Wj∂jH),

but simple calculation shows that

AjTr(H†WjH) = Aj
[
Wj,1(H1H2 −H2H1)

+ iWj,2(H1H2 −H2H1) +Wj,3(|H1|2 − |H2|2)
]
,

and

Tr(∂jH†WjH −H†Wj∂jH) = Wj,1(∂jH1H2 + ∂jH2H1 −H1∂jH2 −H2∂jH1)
+Wj,2(∂jH1H2 − ∂jH2H1 −H1∂jH2 +H2∂jH1)
+Wj,3(∂jH1H1 − ∂jH2H2 −H1∂jH1 +H2∂jH2)

in a complete agreement with a4.
Therefore,

a4 = κ

8π2

∫
d4x

[
(|Υν |4+|Υe|4)|H|4+(|Υν |2+|Υe|2)Tr|DjH|2+F 2+ 1

6TrW 2
]
. (A.11)

A.2 Quark sector

In this sector we have
D̃2
Q = −(14 ⊗ 12 ⊗ 13)∆− aj∂j − b, (A.12)
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where

aj = −2i


Aj


σ

3 + 1
312

1
312


⊗ 12 ⊗ 13 +

(
02

Wj

)
⊗ 12 ⊗ 13 + 14 ⊗ 12 ⊗Gj


 ,

b = −
(

ΦqΦ†q
Φ†qΦq

)
⊗ 12 ⊗ 13 −AjAk




8
912

−1
912


⊗ σjσk ⊗ 13

−
(

02
WjWk

)
⊗ σjσk ⊗ 13 − 14 ⊗ σjσk ⊗GjGk

− i
(

∂jΦq

−∂jΦ†q

)
⊗ σj ⊗ 13 − i

(
02

∂jWk

)
⊗ σjσk ⊗ 13

− i14 ⊗ σjσk ⊗ ∂jGk −Aj
(

σ3Φq

Φ†qσ3

)
⊗ σj ⊗ 13

+
(

ΦqWj

WjΦ†q

)
⊗ σj ⊗ 13 − i(∂jAk)


σ

3 + 1
212

1
312


⊗ σjσk ⊗ 13

− 2Aj


σ

3 + 1
212

1
312


⊗ 12 ⊗Gj − 2

(
02

Wj

)
⊗ 12 ⊗Gj

− 2
3AjAk

(
σ3

02

)
⊗ σjσk ⊗ 13 −

2
3

(
02

AjWj

)
⊗ 12 ⊗ 13.

Therefore,

E = b− ∂jωj − ωjωj

= −
(

ΦqΦ†q
Φ†qΦq

)
⊗ 12 ⊗ 13 − i

(
∂jΦq

−∂jΦ†q

)
⊗ σj ⊗ 13

+ 1
2Fjk

(
σ3

02

)
⊗ εjklσl ⊗ 13 + 1

2

(
02

Wjk

)
⊗ εjklσl ⊗ 13 + 1

214 ⊗ εjklσl ⊗Gjk

−Aj
(

σ3Φq

Φ†qσ3

)
⊗ σj ⊗ 13 +

(
ΦqWj

WjΦ†q

)
⊗ σj ⊗ 13

+ 1
6Fjk14 ⊗ εjklσl ⊗ 13,

(A.13)

where again
Gij = ∂iGj − ∂jGi − i[Gi, Gj ]. (A.14)

As a result,
κ−1Tr(E) = −12Tr(Φ†qΦq). (A.15)

and
κ−1Tr(ΩijΩij) = −2

(22
3 F

2 + 3Tr(W 2) + 4Tr(G2)
)
, (A.16)
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where we use short notation G2 = GijGij , and the full second contribution reads,

κ−1Tr(E2) = 12Tr(Φ†qΦq)2 + 12Tr[(∂jΦ†q)(∂jΦq)] + 12A2Tr(Φ†qΦq)

+ 12Tr(WjWjΦ†qΦq) + 12iAjTr
[
((∂jΦq)Φ†q − Φq(∂jΦ†q))σ3

]

− 12iTr
[
(Φ†q(∂jΦq)− (∂jΦ†q)Φq)Wj

]
− 24AjTr

(
Φ†qσ3ΦqWj

)

+ 22
3 F

2 + 3Tr(W 2) + 4Tr(G2).

(A.17)

As a result, in the quark sector we have

a2 = − κ

4π2

∫
d4x 3Tr(Φ†qΦq), (A.18)

a4 = κ

48π2

∫
d4x

[
18
(
Tr(Φ†qΦq)2 + Tr[(∂jΦ†q)(∂jΦq)] +A2Tr(Φ†qΦq)

+Tr(WjWjΦ†qΦq) + iAjTr
[
((∂jΦq)Φ†q − Φq(∂jΦ†q))σ3

]

−iTr
[
(Φ†q(∂jΦq)− (∂jΦ†q)Φq)Wj

]
− 2AjTr

(
Φ†qσ3ΦqWj

))
.

+22
3 F

2 + 3Tr(W 2) + 4Tr(G2)
]
.

(A.19)

In a completely similar manner as for the leptonic sector we derive:

a2 = − κ

4π2 (3|Υu|2 + 3|Υd|2)
∫
d4x|H|2 (A.20)

and

a4 = κ

8π2

∫
d4x

[ (
3|Υu|4 + 3|Υd|4

)
|H|4 + (3|Υu|2 + 3|Υd|2)Tr|DjH|2

+11
9 F

2 + 1
2TrW 2 + 2

3TrG2
]
.

(A.21)

B The Wick rotated model

B.1 Leptonic sector

Starting with the Wick rotated Dirac operator (3.4) we get

D†L,wDL,w = −(14⊗12)∆E + 2i
[
A0

(
σ3−12

−12

)
⊗12 +

(
02

W0

)
⊗12 +

(
Φl

Φ†l

)
⊗12

]
∂0

+ 2i
[
Aj

(
σ3−12

−12

)
⊗12 +

(
02

Wj

)
⊗12 +

(
−iΦl

iΦ†l

)
⊗σj

]
∂j

+ i(∂0A0)
(
σ3−12

−12

)
⊗12 + i(∂jAk)

(
σ3−12

−12

)
⊗σjσk

+A2
0

(
2(12−σ3)

12

)
⊗12 +AjAk

(
2(12−σ3)

12

)
⊗σjσk
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+
(

02

W 2
0 + i∂0W0

)
⊗12 +

(
02

WjWk + i∂jWk

)
⊗σjσk

−F0j

(
σ3−12

12

)
⊗σj +

(
02

W0j

)
⊗σj − 2

(
02

A0W0 +AjWj

)
⊗12

+ i

(
∂0Φl

∂0Φ†l

)
⊗12 + i

(
−i∂jΦl

i∂jΦ†l

)
⊗σj +

(
ΦlΦ†l

Φ†lΦl

)
⊗12

+A0

(
(σ3− 2 ·12)Φl

Φ†l (σ3− 2 ·12)

)
⊗12 +

(
ΦlW0

W0Φ†l

)
⊗12

+Aj

(
−i(σ3− 2 ·12)Φl

iΦ†l (σ3− 2 ·12)

)
⊗σj +

(
−iΦlWj

iWjΦ†l

)
⊗σj .

Writing D†L,wDL,w in the canonical form −(14 ⊗ 12)∆E − 2ωµ∂µ − b (with the Euclidean
summation) we get

E = 1
2Fjkε

jkl

(
σ3 − 12

−12

)
⊗ σl + F0j

(
σ3 − 12

12

)
⊗ σj

+ 1
2ε

jkl

(
04

Wjk

)
⊗ σl −

(
04

W0j

)
⊗ σj + 3

(
ΦlΦ†l

Φ†lΦl

)
⊗ 12.

(B.1)

Its trace is therefore
Tr(E) = 12κTr(Φ†lΦ

†
l ). (B.2)

Furthermore, we have

κ−1Tr(E2) = 6F 2 + Tr(W 2) + 36Tr(Φ†lΦl)2 + 4εjklFjkF0l − 2εjklTr(WjkW0l), (B.3)

where now F 2 = FµνFµν = FjkFjk + 2F0jF0j and similarly for W 2.
Next, we have

Ω0j = −iF0j

(
σ3 − 12

−12

)
⊗ 12 − i

(
02

W0j

)
⊗ 12 + iA0

(
σ3Φl

Φ†lσ3

)
⊗ σj

− i
(

ΦlW0
W0Φ†l

)
⊗ σj −Aj

(
−σ3Φl

Φ†lσ3

)
⊗ 12 +

(
−ΦlWj

WjΦ†l

)
⊗ 12

− 2i
(

ΦlΦ†l
−Φ†lΦl

)
⊗ σj + i

(
∂jΦl

∂jΦ†l

)
⊗ 12 +

(
−∂0Φl

∂0Φ†l

)
⊗ σj ,

(B.4)

hence

κ−1Tr(Ω0jΩ0j) = −12F0jF0j − 2Tr(W0jW0j)− 12A2
0Tr(Φ†lΦl)− 12Tr(W 2

0 Φ†lΦl)

− 4A2
jTr(Φ†lΦl)− 4Tr

(
W 2
j Φ†lΦl

)
− 48Tr(Φ†lΦl)

2 + 24A0Tr(Φ†lσ
3ΦlW0)

+ 8AjTr(Φ†lσ
3ΦlWj)− 4Tr

[
(∂jΦl)†(∂jΦl)

]
− 12Tr

[
(∂0Φl)†(∂0Φl)

]

− 12iA0Tr
[(

(∂0Φl)Φ†l −Φl(∂0Φ†l )
)
σ3
]
− 4iAjTr

[(
(∂jΦl)Φ†l −Φl(∂jΦ†l )

)
σ3
]

+ 12iTr
[(

Φ†l (∂0Φl)− (∂0Φ†l )Φl
)
W0

]
+ 4iTr

[(
Φ†l (∂jΦl)− (∂jΦ†l )Φl

)
Wj

]
.

(B.5)
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Moreover,

Ωjk = −iFjk
(
σ3 − 12

−12

)
⊗ 12 − i

(
02

Wjk

)
⊗ 12 +

(
−∂jΦl

∂jΦ†l

)
⊗ σk

−
(

−∂kΦl

∂kΦ†l

)
⊗ σj − 2iεjkl

(
ΦlΦ†l

Φ†lΦl

)
⊗ σl − i

(
ΦlWj

WjΦ†l

)
⊗ σk

+ i

(
ΦlWk

WkΦ†l

)
⊗ σj + i

(
σ3Φl

Φ†lσ3

)
⊗ (Ajσk −Akσj).

(B.6)

so that

κ−1Tr(ΩjkΩjk) =− 12FjkFjk − 2Tr(WjkWjk)− 96Tr(Φ†lΦl)2

− 16Tr
[
(∂jΦ†l )(∂jΦl)

]
− 16Tr(W 2

j Φ†lΦl)− 16A2
jTr(Φ†lΦl)

+ 32AjTr(ΦlWjΦ†lσ
3)− 16iTr

[(
(∂jΦ†l )Φl − Φ†l (∂jΦl)

)
Wj

]

+ 16iAjTr
[(

Φl(∂jΦ†l )− (∂jΦl)Φ†l
)
σ3
]
.

(B.7)

Therefore,

κ−1Tr(Ω2) =− 12F 2 − 2Tr(W 2)− 24AµAµTr(Φ†lΦl)− 24Tr(WµWµΦ†lΦl)

− 192Tr(Φ†lΦl)2 + 48AµTr
(
Φ†lσ

3ΦlWµ

)
− 24Tr

[
(∂µΦl)†(∂µΦl)

]

− 24iAµTr
[(

(∂µΦl)Φ†l − Φl(∂µΦ†l )
)
σ3
]

+ 24iTr
[(

Φ†l (∂µΦl)− (∂µΦ†l )Φl

)
Wµ

]
,

(B.8)

where the summation is performed over Euclidean indices.
As a result, in the leptonic sector we have

a2 = 3κ
4π2

∫
d4xTr(Φ†lΦl),

a4 = κ

48π2

∫
d4x

[
6
(
Tr(Φ†lΦl)2 − Tr[(∂µΦ†l )(∂µΦl)]−A2Tr(Φ†lΦl)

−Tr(WµWµΦ†lΦl)− iAµTr
[
((∂µΦl)Φ†l − Φl(∂µΦ†l ))σ

3
]

+iTr
[
(Φ†l (∂µΦl)− (∂µΦ†l )Φl)Wµ

]
+ 2AµTr

(
Φ†lσ

3ΦlWµ

))

+6F 2 + Tr(W 2) + 6εjklFjkF0l − 3εjklTr(WjkW0l)
]
.

(B.9)

Using the parametrization from section 3.1 we can further write

a2 = 3κ
4π2 (|Υe|2 + |Υν |2)

∫
d4x|H|2, (B.10)

and

a4 = κ

8π2

∫
d4x

[
(|Υν |4 + |Υe|4)|H|4 − (|Υν |2 + |Υe|2)Tr|DµH|2

+F 2 + 1
6Tr(W 2) + εjklFjkF0l −

1
2ε

jklTr(WjkW0l)
]
.

(B.11)
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B.2 Quark sector

For the quark sector, starting from (3.7), we get

D†Q,wDQ,w = −∆E + 2i


A0


σ

3 + 1
312

1
312


⊗12⊗13 +

(
02

W0

)
⊗12⊗13

+ 14⊗12⊗G0 +
(

Φq
Φ†q

)
⊗12⊗13

]
∂0 + 2i


Aj


σ

3 + 1
312

1
312


⊗12⊗13

+
(

02

Wj

)
⊗12⊗13 + 14⊗12⊗Gj +

(
−iΦq

iΦ†q

)
⊗σj ⊗13

]
∂j

+ i(∂0A0)


σ

3 + 1
312

1
312


⊗12⊗13 + i(∂jAk)


σ

3 + 1
312

1
312


⊗σjσk ⊗13

+A2
0




2
3σ

3 + 10
9 12

1
912


⊗12⊗13 +AjAk




2
3σ

3 + 10
9 12

1
912


⊗σjσk ⊗13

+
(

02

W 2
0 + i∂0W0

)
⊗12⊗13 +

(
02

WjWk + i∂jWk

)
⊗σjσk ⊗13

+ 14⊗12⊗ (G2
0 + i∂0G0) + 14⊗σjσk ⊗ (GjGk + i∂jGk)

−F0j


σ

3 + 1
312

− 1
312


⊗σj ⊗13 +

(
02

W0j

)
⊗σj ⊗13−

(
12

−12

)
⊗σj ⊗G0j

+ 2
3

(
02

A0W0 +AjWj

)
⊗12⊗13 + 2


σ

3 + 1
312

1
312


⊗12⊗ (A0G0 +AjGj)

+ 2
(

02

W0

)
⊗12⊗G0 + 2

(
02

Wj

)
⊗12⊗Gj + i

(
∂0Φq

∂0Φ†q

)
⊗12⊗13

+
(

∂jΦq
−∂jΦ†q

)
⊗σj ⊗13 +A0


 σ3Φq + 2

3Φq
Φ†qσ3 + 2

3Φ†q


⊗12⊗13

− iAj


 σ3Φq + 2

3Φq
−Φ†qσ3− 2

3Φ†q


⊗σj ⊗13 +

(
ΦqW0

W0Φ†q

)
⊗12⊗13

+ i

(
−ΦqWj

WjΦ†q

)
⊗σj ⊗13 + 2

(
Φq

Φ†q

)
⊗12⊗G0

+ 2i
(

−Φq
Φ†q

)
⊗σj ⊗Gj +

(
ΦqΦ†q

Φ†qΦq

)
⊗12⊗13.

(B.12)
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In this case we therefore have

E = 1
2Fjkε

jkl


σ

3 + 1
312

1
312


⊗ σl ⊗ 13 + F0j


σ

3 + 1
312

−1
312


⊗ σj ⊗ 13

+ 1
2ε

jkl

(
02

Wjk

)
⊗ σl ⊗ 13 −

(
02

W0j

)
⊗ σj ⊗ 13

+ 1
2ε

jkl14 ⊗ σl ⊗Gjk +
(

12
−12

)
⊗ σj ⊗G0j

+ 3
(

ΦqΦ†q
Φ†qΦq

)
⊗ 12 ⊗ 13.

(B.13)

Hence
Tr(E) = 36κTr(Φ†qΦq). (B.14)

Furthermore, we have

Tr(E2) = 22
3 F

2 + 3Tr(W 2) + 4Tr(G2) + 12εjklFjkF0l − 6εjklTr(WjkW0l) + 108Tr(Φ†qΦq)2.
(B.15)

Moreover,

Ω0j = −F0j


σ

3 + 1
312

1
312


⊗ 12 ⊗ 13 − i

(
02

W0j

)
⊗ 12 ⊗ 13 − i14 ⊗ 12 ⊗G0j

+ iA0

(
σ3Φq

Φ†qσ3

)
⊗ σj ⊗ 13 − i

(
ΦqW0

W0Φ†q

)
⊗ σj ⊗ 13

−Aj
(

−σ3Φq

Φ†qσ3

)
⊗ 12 ⊗ 13 +

(
−ΦqWj

WjΦ†q

)
⊗ 12 ⊗ 13

− 2i
(

ΦqΦ†q
−Φ†qΦq

)
⊗ σj ⊗ 13 + i

(
∂jΦq

∂jΦ†q

)
⊗ 12 ⊗ 13

+
(

−∂0Φq

∂0Φ†q

)
⊗ σj ⊗ 13,

(B.16)

hence

κ−1Tr(Ω0jΩ0j) = −44
3 F0jF0j − 6Tr(W0jW0j)− 8Tr(G0jG0j)− 36A2

0Tr(Φ†qΦq)

− 36Tr(W 2
0 Φ†qΦq)− 12A2

jTr(Φ†qΦq)− 12Tr(W 2
j Φ†qΦq)− 144Tr(Φ†qΦq)2

+ 72A0Tr(Φ†qσ3ΦqW0) + 24AjTr(Φ†qσ3ΦqWj)− 12Tr
[
(∂jΦq)†(∂jΦq)

]

− 36Tr
[
(∂0Φq)†(∂0Φq)

]
− 36iA0Tr

[(
(∂0Φq)Φ†q −Φq(∂0Φq)†

)
σ3]

− 12iAjTr
[(

(∂jΦq)Φ†q −Φq(∂jΦq)†
)
σ3]+ 36iTr

[(
Φ†q(∂0Φq)− (∂0Φ†q)Φq

)
W0
]

+ 12iTr
[(

Φ†q(∂jΦq)− (∂jΦq)†Φq
)
Wj

]
.

(B.17)
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Moreover,

Ωjk = −iFjk


σ

3 + 1
312

1
312


⊗ 12 ⊗ 13 − i

(
02

Wjk

)
⊗ 12 ⊗ 13 − i14 ⊗ 12 ⊗Gjk+

+
(

−∂jΦq

∂jΦ†q

)
⊗ σk ⊗ 13 −

(
−∂kΦq

∂kΦ†q

)
⊗ σj ⊗ 13

− 2iεjkl
(

ΦqΦ†q
Φ†qΦq

)
⊗ σl ⊗ 13 − i

(
ΦqWj

WjΦ†q

)
⊗ σk ⊗ 13

+ i

(
ΦqWk

WkΦ†q

)
⊗ σj ⊗ 13 + i

(
σ3Φq

Φ†qσ3

)
⊗ (Ajσk −Akσj)⊗ 13,

(B.18)

and

κ−1Tr(ΩjkΩjk) = −44
3 FjkFjk − 6Tr(WjkWjk)− 8Tr(GjkGjk)− 288Tr(Φ†qΦq)2

− 48Tr
[
(∂jΦq)†(∂jΦq)

]
− 48Tr(W 2

j Φ†qΦq)− 48A2
jTr(Φ†qΦq)

+ 96AjTr(ΦqWjΦ†qσ3)− 48iTr
[(

(∂jΦq)†Φq − Φ†q(∂jΦq)
)
Wj

]

+ 48iAjTr
[(

Φq(∂jΦq)† − (∂jΦq)Φ†q
)
σ3
]
.

(B.19)

Therefore

κ−1Tr(Ω2) = −2
(22

3 F
2 + 3Tr(W 2) + 4Tr(G2)

)
− 576Tr(Φ†qΦq)2

− 72Tr
[
(∂µΦq)†(∂µΦq)

]
− 72Tr

(
WµWµΦ†qΦq

)
− 72AµAµTr

(
Φ†qΦq

)

+ 144AµTr
(
Φ†qσ3ΦqWµ

)
− 72iAµTr

[(
(∂µΦq)Φ†q − Φq(∂µΦq)†

)
σ3
]

+ 72iTr
[(

Φ†q(∂µΦq)− (∂µΦq)†Φq

)
Wµ

]
.

(B.20)

Expressing the coefficients a2 and a4 as in the section 3.1 we can further write

a2 = 3κ
4π2 (|Υe|2 + |Υν |2)

∫
d4x3|H|2, (B.21)

and

a4 = κ

8π2

∫
d4x

[
(3|Υν |4 + 3|Υe|4)|H|4 − (3|Υν |2 + 3|Υe|2)Tr|DµH|2

+ 11
9 F

2 + 1
2Tr(W 2) + 2

3Tr(G2) + 3εjklFjkF0l −
3
2ε

jklTr(WjkW0l)
]
.

(B.22)
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2.1.3 Outlook

The proposed framework for the description of the Standard Model of particle

physics seems to be promising. First of all, it is, from the very construction, free

of the old fermion doubling problem. Furthermore, its formulation already has

the Lorentzian symmetry included. The interplay between the fermion doubling

and the Lorentzian structure is also clearly visible. Moreover, the Dirac operator

is chiral and this is the feature that seems to be to of crucial importance. It

is worth stressing that the chirality was also a potential source of the fermion

doubling problem in lattice gauge theories as well as within the almost-commutative

framework [127]. The non-product geometry sheds new light on these old problems.

The obtained results suggest that this framework may be the right one for the

description of models present in particle physics. The story is not finished yet. The

intriguing feature that the restriction of the full triple to constant functions gives

a Riemannian triple without a real structure, while the restriction to the algebra

of functions on the Minkowski spacetime produces real even Lorentzian spectral

triple, requires further investigations. The natural continuation of this path of

research is the rigorous mathematical understanding of these types of non-product

geometries.

Furthermore, the nontrivial relation to twisted spectral triples has to be in-

vestigated in the future, especially the twist by a pseudo-Riemannian structure is

an intriguing subject for further research. It seems reasonable to claim that there

is also a deeper relationship between our model and the approach investigated in

[130]. All these aspects hopefully will shed new light on the geometry of the Stan-

dard Model, and may also be used for the geometric formulation of theories going

beyond the Standard Model.
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2.2 Non-product geometry for modified gravity theories

The fact that the classical General Relativity can be described in terms of spec-

tral data associated with a given spacetime motivates the search for an analogous

formulation of models that could describe certain types of modified gravity theories.

Since, due to Connes’ reconstruction theorem, there is no place for such models

within the class of commutative spectral triples, we have to go one step further.

However, also almost-commutative framework does not allow for such modifica-

tions since the Dirac operator in the product geometry is of the form that fixes

the continuous part to be the one for a classical geometry. Therefore, non-product

types of geometry appear as a possible solution.

The first candidate for a model that potentially could be derived from the

spectral data is the bimetric theory of gravity, which has its origin in ghost-free

Hassan-Rosen theory [135, 136, 137].

The action of this model reads

S =− M 2
g

2

∫

M

√
− det g R(g)−

M 2
f

2

∫

M
+m2M 2

g

∫

M

√
− det g

4∑

n=0

βnen(
√
g−1f)

+

∫

M

√
− det gLm(g,Φ) + α

∫

M

√
− det gLm(f,Φ),

(14)

where g and f are two metric tensors with R(g) and R(f) being their Ricci scalars,

respectively. The two mass scales Mg and Mf are present, together with other free

parameters: β0, . . . , β4,m2, α. The potential term is constructed out of elementary

symmetric polynomials en in eigenvalues of the matrix
√
g−1f . For each metric

there is a respective interaction term Lm with a matter field Φ.

This model was intensively studied both analytically and numerically [138, 139,

140]. It was demonstrated that in the case when the two metrics g and f are of the
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Friedmann-Lemaître-Robertson-Walker (FLRW) type, this model can, for a certain

range of parameters, reconstruct the standard ΛCDM model and, in addition, is a

theory that potentially could describe the dark matter sector. Several cosmological

scenarios were also analysed.

The lack of geometric interpretation together with potential applications of

this model were the reasons for choosing it as a first candidate for the search of its

spectral formulation. Motivated by the results from [141], where a certain type of

non-product noncommutative geometry was introduced, we extented this analysis

and search for a connection to bimetric theories. The model introduced in [141]

differs from the almost-commutative type of geometries by the choice of the Dirac

operator. The continuous part of the product Dirac operator (9) is replaced by

D1 0

0 D2


 , (15)

where D1 and D2 are two independent Dirac operators on M. The spectral action

for flat FLRW type geometries was computed therein, and the analysis of certain

cosmological solutions was performed.
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2.2.1 Doubled geometries - dynamical stability of solutions for FLRW

models

We generalize the result from [141] into arbitrary FLRW geometries, and find

relations between this type of non-product models, to which we refer as either

doubled geometry or two-sheeted models, and bimetric gravity theories. The choice

of FLRW geometries is motivated by the aforementioned existing numerical analysis

performed for bimetric gravity models as well as by the fact that FLRW geometries

were analysed in the classical case (i.e. for one copy of a manifold only) from the

spectral perspective [142, 143, 144] and certain limits can be performed as cross-

checks for the obtained new results.

First, using the method based on Wodzicki residue, we compute the spectral

action for models which are flat or have either positive or negative curvature, and,

in contrary to [141], their lapse functions are nontrivial. In all the cases, the

interaction potential is, as expected, of the same form and possesses features that

are characteristic to bimetric gravity models. Mainly, the potential term can be

represented in the form V
(√

g−1
2 g1

)√
det g2, where V is a certain function which

depends only on the (eigenvalues of the) matrix
√
g−1
2 g1 constructed out of the two

FLRW metrics g1, g2 present in the model. Furthermore,

V
(√

g−1
2 g1

)√
det g2 = V

(√
g−1
1 g2

)√
det g1, (16)

exactly as in the case of bimetric models. However, the exact form of this inter-

action term is different. Instead of a polynomial, we have here a rational function

which can be expressed as a ratio of certain combinations of elementary symmetric

polynomials.

Having derived the effective Lagrangian for the doubled geometry model and
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knowing its basic symmetries, we then proceed further with the analysis of its

dynamics. We first derive the equations of motion and then discuss their coupling

with stress-energy tensor, i.e. the interaction with matter. Based on microscopic

considerations we argue the correctness of this procedure. Since we are interested

in analysing cosmological scenarios, we take the stress-energy tensor for a perfect

fluid. These choices are not the most general ones but cover most of the scenarios

we are interested in.

Unfortunately, even for this simplified version, the solutions of the equations

of motion cannot be easily found. Instead of developing numerical tools to get

around this problem, we decide to first check if the classical solutions of the Ein-

stein equations obtained for each sheet separately are stable under infinitesimal

perturbations within our doubled geometry framework.

We derive a system of differential equations for these perturbations and solve

it for a series of different cosmological scenarios. For each of these cases, there is

always a range of parameters for which the stability of the solutions is found. We

then discuss the possible cosmological implications of this model.

The content of this subsection is already published in [A. Bochniak and A. Sitarz,

Stability of Friedmann-Lemaître-Robertson-Walker solutions in doubled geometries,

Phys. Rev. D 103, 044041 (2021), DOI: 10.1103/PhysRevD.103.044041, (Copy-

right 2021 by the American Physical Society) ]. Here we reproduce its postprint.
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Stability of Friedmann-Lemaître-Robertson-Walker solutions in
doubled geometries.

Arkadiusz Bochniak and Andrzej Sitarz
Institute of Theoretical Physics, Jagiellonian University,
prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland.

Motivated by the models of geometry with discrete spaces as additional dimensions
we investigate the stability of cosmological solutions in models with two metrics of the
Friedmann-Lemaître-Robertson-Walker type. We propose an effective gravity action that
couples the two metrics in a similar manner as in bimetric theory of gravity and analyse
whether standard solutions with identical metrics are stable under small perturbations.

I. INTRODUCTION

The spectacular success of geometry in the description of large-scale structure of the Uni-
verse (general relativity) as well as fundamental interactions (gauge theories) is one of the
biggest achievements of modern physics. Yet the link between these two is still a major chal-
lenge to our understanding of the world. Apart from that there are multiple efforts to solve
the puzzle of dark matter with interesting attempt to modify gravity. The bimetric theory
[1], being one of consistently formulated models, appears to be a good candidate to solve
the puzzle in accordance with the cosmological data [2–5]. However, the necessity to add a
second metriclike field appears to be rather inelegant and is not well founded from the point
of view of Riemannian geometry with the interaction potential between the two metrics intro-
duced ad hoc, despite being motivated by non-linear generalizations of Fierz-Pauli massive
gravity [6] which do not suffer from Boulware-Deser ghost problem [1, 7].

Surprisingly, the hint of a geometric explanation might come from models used in particle
physics. In a quest to explain the structure of the Standard Model, a purely geometric in-
terpretation of its content was proposed by Alain Connes using the tools of noncommutative
geometry [8–10]. Taken seriously, it explains the existence of different fermions and gauge
interactions as related to geometry of a finite type, related to a finite-dimensional algebra
C ⊕ H ⊕ M3(C), with the derivation of the action linked to a general principle of Euc-
lidean spectral action, which provides all terms, including the Yang-Mills-Higgs leading to
the spontaneous symmetry breaking as well the pure gravity Einstein-Hilbert action.

A simplified model of this type, which was the first considered [11] in the early days of the
development of the theory, describes a product of the smooth geometry (a four-dimensional
manifold) with a two-point space. Such two-sheeted geometry, with a product structure is
tractable in noncommutative geometry leading to a simple Yang-Mills-Higgs toy model.
However, from the point of view of gravity an interesting question is whether it is admissible
to have different metrics on the two separate sheets of this geometry. This question is a chal-
lenge not only from the conceptual but also from the technical point of view, as it requires the
computation of the spectral action in a much more general case than the product geometry. In
particular, the first question posed is whether the two metrics interact with each other. A first
step in this direction was done in [12], where a simple model of two Friedmann-Lemaître-
Robertson-Walker-type, flat geometries with identical lapse function was considered, result-
ing in the effective potential term linking the two geometries.

The present paper goes well beyond the restricted situation of the previous analysis,
providing a full derivation of the potential linking the metric and the equations of motion
as well as the analysis of their stability. Though our model differs significantly from the typ-
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ical bimetric theory (none of the metrics can be thought of a background metric) the obtained
potential is much similar to the bimetric case (though it is expressed as a rational function
and not a polynomial in the eigenvalues of the metrics ratio). Moreover, the symmetric coup-
ling to the matter and radiation makes it closer to the symmetric bimetric theory, where both
metrics couple (in the same way) to matter and radiation.

The paper is organized as follows: we present the assumptions of our model (the struc-
ture of the two-sheeted geometry) and the methods of deriving the leading two terms of the
spectral action using the pseudodifferential calculus and the Wodzicki residue. After com-
puting the Euclidean action functional for flat as well for curved geometries we perform the
Wick rotation and obtain a set of nonlinear differential equations for the four functions that
describe the model. In the rest we focus on the stability of the symmetric solutions, which
are the standard Friedmann-Lemaître-Robertson-Walker geometries for both sheets and ana-
lyse small perturbations for the typical cosmological solutions of dark-energy, matter and
radiation-dominated universes. In the last section we briefly discuss the possible physical
consequences and argue why the model is physically viable.

II. ALMOST COMMUTATIVE FRIEDMANN-LEMAÎTRE-ROBERTSON-WALKER
MODELS

A. Almost-commutative geometries

The Gelfand-Naimark equivalence between topological spaces and commutative
C∗-algebras was further enriched by A. Connes in order to include noncommutative algeb-
ras and also to describe more than only the topology. In his formulation of noncommutative
geometry [13] the crucial role is played by a spectral triple which is a system (A, H,D)
consisting of an unital ∗-algebra A, Hilbert space H and a Dirac type selfadjoint oper-
ator acting on H . Usually, more additional structure is assumed (e.g. the existence of
grading-type operator γ, and an anti-unitary operator J , called real structure) and further
compatibility conditions between all these elements. The canonical commutative example is
(C∞(M), L2(M,S), DM), where M is a manifold equipped with a spin structure, L2(M,S)
is the Hilbert space of square-integrable spinors, and DM = iγµ(∂µ + ωµ) is the canonical
Dirac operator expressed in the terms of the connection ωµ on the spinor bundle.

It turns out that crucial from the applications in particle physics point of view are triples
with algebras being tensor products of the above one which some finite-dimensional mat-
rix algebras AF . The Hilbert space is the tensor product of L2(M,S) with some finite-
dimensional Hilbert space HF on which AF is represented, and its dimension determines the
number of fermionic degrees of freedom in the theory. Grading operators and real structures
are also composed in an appropriate way in order to define analogous objects on the resulting
triple. The Dirac operator, however, is not just the simple tensor product of DM and DF , but
has the following form:

D = DM ⊗ 1 + γM ⊗DF . (II.1)

The resulting triple forms the so-called almost-commutative geometry and have been the
backbone of multiple models applied to the physics of elementary particles (see [14, 15]).
The starting point to consider physical models based on spectral triples is the spectral action.
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Its bosonic part is given by

S(D) = Trf

(
D

Λ

)
, (II.2)

where Λ is some cut-off parameter and f is some smooth approximation of the characteristic
function of the interval [0, 1]. In the case of particle physics models it reproduces the bo-
sonic part of the Lagrangian of such theories minimally coupled to gravity, together with the
standard Hilbert-Einstein action for the metric.

B. The classical geometry

We consider geometries described by the generalized Friedmann-Lemaître-Robertson-
Walker metric,

ds2 = b(t)2dt2 + a(t)2
(
dχ2 + S2

k(χ)
(
dθ2 + sin2(θ)dφ2

))
, (II.3)

where

Sk(χ) =





sin(χ), k = 1,

χ, k = 0,

sinh(χ), k = −1

(II.4)

and a(t), b(t) are positive (sufficiently smooth) functions.
The orthogonal coframe {θa} for ds2 is defined so that ds2 = θaθa. It allows us to im-

mediately compute the spin connection ω which is determined by dθa = ωab ∧ θb. Then, the
Dirac operator is, in a local coordinates, given by

D = γadxµ(θa)
∂

∂xµ
+

1

4
γcωcabγ

aγb, (II.5)

where γa’s are gamma matrices chosen to be antihermitian and so that γaγb+γbγa = −2δabI .
Instead of the original Dirac operator we can equivalently analyse the operator, which is

conformally rescaled, Dh = h−1Dh, with the scale factor h(t) = a(t)−3/2b(t)−1/2. This
assures that we can work with the Hilbert space of spinors, where the scalar product does not
depend on a(t) and b(t).

C. The two-sheet almost commutative model

We consider a generalised almost-commutative geometry, which is described by a product-
like spectral triple of the spectral triple over the manifold with the Friedmann-Lemaître-
Robertson-Walker metric and the triple over two points. However, instead of the usual
product Dirac operator, we take a more general one,

D =

(
D1 γΦ
γΦ∗ D2

)
, (II.6)

where D1, D2 are both of the form (II.5), yet with possibly different scaling functions a and
b, and Φ being a priori a field (which can be later restricted to be constant).

82



4

The choice of the full Dirac operator with the γ in the off-diagonal part is motivated by
the fact that in the case of D1 = D2 it yields a usual almost-commutative product geometry.
Note that, in principle one can study generalized objects with arbitrary order-zero operators
on the off-diagonal of D, so the only thing we require of γ is that it anticommutes with γa

matrices and is not necessarily the chirality grading operator of the Euclidean spin geometry
of the manifold M . In order to have the full Dirac operator hermitian we must require that γ
is hermitian and, consequently, we have to normalize γ2 = 1. However, we shall relax this
assumption and consider also models with γ2 = −1. This allows for much more flexibil-
ity, in particular, for the models that are derived from higher-dimensional Kaluza-Klein type
geometries and would lead to some more realistic effective physical situations. One of the
interesting possibilities is that when passing to the Lorentzian signature for the manifold M
we can as well choose the Lorentzian signature for the discrete degrees of freedom. This pos-
sibility has been discussed for finite geometries, albeit in a different context of the Standard
Model in [16], in the natural language of Krein spaces. What is important for our consider-
ation is that the only difference will be that the operator D will be only Krein self-adjoint,
meaning that γ will be antiselfadjoint and γ2 = −1. To accommodate for both possibilities
in the discrete degrees of freedom we do not fix γ2 and we allow that (after normalization)
γ2 = κ = ±1.

To simplify the presentation in the paper we introduce the following matrices:

B(t) =

(
1

b1(t)
1

b2(t)

)
, A(t) =

(
1

a1(t)
1

a2(t)

)
, F (t, x) =

(
Φ(t, x)

Φ(t, x)∗

)
. (II.7)

D. The spectral action

For the geometry described by a given Dirac operator D the main object of interest is the
Laplace-type operatorD2, which is a second-order differential operator acting on the sections
of the doubled spinor bundle. Its symbol σD2(x, ξ) consists of three parts a0+a1+a2, each of
ak(x, ξ) being homogeneous of degree k in ξ’s. Then we compute the symbol of its inverse,

σD−2(ξ) = b0 + b1 + b2 + ..., (II.8)

where bk(x, ξ) is homogeneous of order −2−k in ξ (we briefly review the mathematical
details of how the computations of the symbols are performed in the Appendix A) and use it
to compute the first two terms of the spectral action for the considered model.

It can be expressed in terms of Wodzicki residua [17, 18] as,

S(D) = Λ4 Wres(D−4) + cΛ2 Wres(D−2) =

∫

M

∫

‖ξ‖=1

(
Λ4 Tr TrCl b

2
0 + cΛ2 Tr TrClb2

)
,

(II.9)
where TrCl denotes the trace performed over the Clifford algebra and Tr is the trace over the
matrices M2(C) that are used in the mild noncommutativity introduced in the model.

E. Flat geometries.

Although the topology of the flat case in physics is not exactly toroidal, from the point
of view of local behaviour it is identical to such, which was already analysed for b = 1 in
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[12]. In this section we generalize those results to the case with arbitrary function b(t), so we
consider here toroidal Friedmann-Lemaître-Robertson-Walker geometries described by the
following metric in the coordinate system (t, x) = (t, x1, x2, x3):

ds2 = b(t)2dt2 + a(t)2
(
(dx1)2 + (dx2)2 + (dx3)2

)
. (II.10)

Hence an orthogonal frame for ds2 is of the form,

θ0 = b(t)dt, θ1 = a(t)dx1, θ2 = a(t)dx2, θ3 = a(t)dx3, (II.11)

while the matrix of connection 1-forms is,

ω =
1

a(t)b(t)




0 −(∂ta)θ1 −(∂ta)θ2 −(∂ta)θ3

(∂ta)θ1 0 0 0
(∂ta)θ2 0 0 0
(∂ta)θ3 0 0 0


 . (II.12)

As a result, the (single) Dirac operator takes the following form,

D =
1

b(t)
γ0
(
∂t +

3∂ta

2a(t)

)
+

1

a(t)
γj∂j, (II.13)

and after the conformal rescaling h(t) = a(t)−3/2b(t)−1/2 we get

Dh =
1

b(t)
γ0
(
∂t −

∂tb

2b(t)

)
+

1

a(t)

(
γ1∂1 + γ2∂2 + γ3∂3

)
, (II.14)

so that the full Dirac operator acting on the doubled Hilbert space of spinors is,

D = γ0 (B(t)∂t − ∂tB) + A(t)γj∂j + γF (t, x). (II.15)

The resulting Laplace-type operator in this model is of the following form:

D2 =−B2∂2t − A2∂2 +B(∂tA)γ0γk∂k + [F,A]γγk∂k

+ [F,B]γγ0∂t + κF 2 + γ0γB(∂tF ) + γjγA(∂jF )

+ γ0γ[F, ∂tB] +B(∂2tB) +B(∂tB)∂t − (∂tB)2.

(II.16)

The symbol σ(D2) = a0 + a1 + a2 is given by

a2 = B2ξ20 + A2ξ2,

a1 = i
[
B(∂tA)γ0γkξk +B(∂tB)ξ0 + [F,A]γγkξk + [F,B]γγ0ξ0

]
,

a0 = κF 2 − γγ0 (B(∂tF ) + [F, ∂tB])− γγjA(∂jF ) +B(∂2tB)− (∂tB)2,

(II.17)

where we denoted by ξ2 = ξ21 + ξ22 + ξ23 . Now, computing the symbol of D−2 using the
prescription presented in Appendix A, we obtain b0(D) and b2(D). Then, taking the trace
over the Clifford algebra and the matrices M2(C), and integrating over the cosphere bundle
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|ξ|2 = 1, we compute the Wodzicki residue that gives us the Euclidean spectral action of the
considered model. The final result is,

S(D) ∼
∫
dt

{
Λ4(a31b1 + a32b2)−

cΛ2

12

(
a31b1R(a1, b1) + a32b2R(a2, b2)

)

+cκΛ2|Φ|2b1b2
(a1 − a2)2

(a1b2 + a2b1)2
[
a21(2a2b1 + a1b2) + a22(2a1b2 + a2b1)

]

+cκΛ2|Φ|2 (b1 − b2)2
(a2b1 + a1b2)2

a21a
2
2(a1b1 + a2b2)− cκΛ2|Φ|2(a31b1 + a32b2),

(II.18)

where the scalar curvature for the flat spatial geometry is,

R(a, b) = 6

(
∂ta ∂tb

ab3
− (∂ta)2

a2b2
− ∂2t a

ab2

)
. (II.19)

F. The non-flat case

In this subsection we concentrate on the case with positive (k = 1) curvatures, with the
negative (k=−1) case that can be treated in a similar manner. Although the effective Lag-
rangian and the equations of motion are local and hence the dynamical terms are expected to
be unchanged, we derive them explicitly using appropriate coordinates. For the case of k = 1
we use the spherical coordinates (t, χ, θ, φ), so that the metric is then described by:

ds2 = b(t)2dt2 + a(t)2
(
dχ2 + sin2(χ)

(
dθ2 + sin2(θ)dφ2

))
. (II.20)

The orthogonal frame is given by

θ0 = b(t) dt, θ1 = a(t) dχ, θ2 = a(t) sinχdθ, θ3 = a(t) sinχ sin θ dφ, (II.21)

hence

dθ0 = 0, dθ1 =
∂ta

ab
θ0 ∧ θ1, dθ2 =

∂ta

ab
θ0 ∧ θ2 +

cotχ

a
θ1 ∧ θ2

dθ3 =
∂ta

ab
θ0 ∧ θ3 +

cotχ

a
θ1 ∧ θ3 +

cot θ

a sinχ
θ2 ∧ θ3.

(II.22)

Therefore the only nonvanishing components for the spin connection ω are [19, 20]:

ω101 = ω202 = ω303 =
∂ta

ab
, ω212 = ω313 =

cotχ

a
, ω323 =

cot θ

a sinχ
. (II.23)

Now, for the Dirac operator we get explicitly

D = γ0
1

b

(
∂

∂t
+

3

2

∂ta

a

)
+

1

a
D3, (II.24)

where in this case

D3 = γ1
∂

∂χ
+ γ2 cscχ

∂

∂θ
+ γ3 cscχ csc θ

∂

∂φ
+ γ1 cotχ+

1

2
γ2 cot θ cscχ. (II.25)
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After the conformal rescaling by using h(t) = a(t)−3/2b(t)−1/2 we end up with the following
Dirac operator

Dh =
1

b
γ0
(
∂

∂t
− ∂tb

b

)
+

1

a
D3, (II.26)

Therefore, for the doubled model that we are considering, the Dirac operator is

D = γ0 (B(t)∂t − ∂tB) + A(t)D3 + γF (t, x). (II.27)

As a result we have

D2 =−B2∂2t + A2D2
3 +B(∂tA)γ0D3 + [F,A]γD3

+ [F,B]γγ0∂t + κF 2 + γ0γB(∂tF )− γA(D3F )

+ γ0γ[F, ∂tB] +B(∂2tB) +B(∂tB)∂t − (∂tB)2.

(II.28)

In order to compute its symbol σD2 = a2 + a1 + a0 we first notice that the symbol of D2
3 is

given by:

a2(D
2
3) = ξ2χ + csc2 χ ξ2θ + csc2 χ csc2 θ ξ2φ,

a1(D
2
3) = − i

(
2 cotχ ξχ + cot θ csc2 χ ξθ + γ1γ2 cotχ cscχ ξθ+

+ γ1γ3 csc θ cotχ cscχ ξφ + γ2γ3 cot θ csc θ csc2 χ ξφ
)
,

a0(D
2
3) = − 1

2
γ1γ2 cot θ cotχ cscχ+ csc2 χ− cot2 χ

+
1

2
csc2 θ csc2 χ− 1

4
cot2 θ csc2 χ.

(II.29)

As a result, for the operator D2, we have

a2 =B2ξ20 + A2ξ2χ + csc2 χA2ξ2θ + csc2 χ csc2 θ A2ξ2φ,

a1 = − i
{

2 cotχA2ξχ + cot θ csc2 χA2ξθ −B(∂tB)ξ0+

+ γ1γ2A2 cotχ cscχ ξθ + γ1γ3A2 csc θ cotχ cscχ ξφ

+ γ2γ3A2 cot θ csc θ csc2 χ ξφ −B(∂tA)γ0γ1ξχ

−B(∂tA)γ0γ2 cscχ ξθ −B(∂tA)γ0γ3 cscχ csc θ ξφ−
− [F,A]γγ1ξχ − [F,A]γγ2 cscχ ξθ − [F,A]γγ3 cscχ csc θ ξφ

−[F,B]γγ0ξ0
}
,

a0 =A2

(
csc2 χ− cot2 χ+

1

2
csc2 θ csc2 χ− 1

4
cot2 θ csc2 χ

)

+ κF 2 +B(∂2tB)− (∂tB)2 − 1

2
γ1γ2 cot θ cotχ cscχ

+B(∂tA)γ0γ1 cotχ+
1

2
B(∂tA)γ0γ2 cot θ cscχ

+ [F,A]γγ1 cotχ+
1

2
[F,A]γγ2 cot θ cscχ+ γ0γ[F, ∂tF ]

− γγ0B(∂tF )− γγ1A (∂χF + F cotχ)− γγ2A cscχ

+

(
∂θF +

F

2
cot θ

)
− γγ3A cscχ csc θ ∂φF.
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Using the prescription presented in Appendix A, we first compute the symbols σD−2 = b0 +
b1 + b2 + ..., then we proceed, in an exactly similar manner as in the case of the toroidal
geometry, to compute the spectral action. The result is,

S(D) ∼
∫
dt

{(
Λ4 − cκΛ2|Φ|2

)
(a31b1 + a32b2)−

cΛ2

12

(
a31b1R(a1, b1) + a32b2R(a2, b2)

)

+cκΛ2|Φ|2b1b2
(a1 − a2)2

(a1b2 + a2b1)2
[
a21(2a2b1 + a1b2) + a22(2a1b2 + a2b1)

]
+

+cκΛ2|Φ|2 (b1 − b2)2
(a2b1 + a1b2)2

a21a
2
2(a1b1 + a2b2)

}
,

(II.30)

span

where now R(a, b) denotes the scalar of curvature for spherical spatial geometries,

R(a, b) = 6

(
∂ta ∂tb

ab3
− (∂ta)2

a2b2
− ∂2t a

ab2
+

1

a2

)
. (II.31)

Note that the action functional differs (II.30) from (II.18) only through the last term that
arises from the scalar curvature of the spherical spatial geometry, where a relevant term de-
pending on k = 1 is added. The above result can be generalized to the negative curvature
case (we omit straightforward but tedious parametrization and computation of symbols). In
fact, taking R(a, b) as R(a, b, k), depending on the space curvature k, we have a general ac-
tion functional for all geometries in the doubled spacetime Friedmann-Lemaître-Robertson-
Walker models.

G. The interactions of the metrics

Before we pass to the equations of motions an their stability, let us briefly compare the
effective potential describing the interaction between the two metrics to the bimetric gravity
models[1, 4, 21]. Certainly, apart from the fact that we have an action for two metrics, there is
a much deeper symmetry between the two, since neither plays a role of a „background” met-
ric. In fact, the usual solution in the case of vanishing α gives both metric totally independent
of each other. Introducing the variables,

x =
b1
b2
, y =

a1
a2
,

which depend only on the entries of the matrix Xa
c = gab2 g1bc, we can express the interactions

between the metrics as proportional to:

V
(√

g−12 g1

)√
g2 = V

(√
g−11 g2

)√
g1, (II.32)

where the function V
(√

g−12 g1

)
is of the form:

x2 + 2xy − 2x2y + y2 − 6xy2 + 4x2y2 + 4xy3 − 6x2y3 + x3y3 − 2xy4 + 2x2y4 + xy5

(x+ y)2
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which can be efficiently expressed as a rational function of the symmetric polynomials in√
X .
We stress that the resulting model possesses features that are characteristic to bimetric

gravity models: the potential V depends on the metrics only through
√
X and satisfies (II.32).

On the other hand, in the usual bimetric models such potential is a polynomial in eigenvalues
of
√
X rather than a rational function. It was proposed in [22] that the construction presen-

ted here might results in the derivation of bimetric theories out of the geometric data. The
above result suggest that indeed this class of models resembles some characteristics of bi-
metric gravity models, but is a different one. We postpone for the future research the detailed
analysis of these differences and their cosmological implications.

H. The equations of motion

The action functional (II.30) depends on the field B only via b1 and b2 but not their de-
rivatives. As a result, b1 and b2 are not dynamical and its Euler-Lagrange equations give rise
to the constraints of the model. Moreover, due to the reparametrization invariance we can fix
one of these functions or relate them with each other.

Furthermore, the action functional was derived for the Euclidean model and to pass to
physical situation we need to perform Wick rotation, as described in the [12]. In our case,
this will affect only the square of the time derivative of the scaling factors ai(t), which will
change signs. Consequently, the action and the equation of motion for the rest of this paper
are in the Lorentzian signature of the metric (−,+,+,+). Let us remind that the discrete
degrees of freedom of the geometry might be Riemannian or pseudo-Riemannian, which
results in the appropriate choice of the sign κ.

After integration by parts and omitting the boundary terms that are full derivatives in t,
we obtain the following action for the pure gravity Friedmann-Lemaître-Robertson-Walker
doubled geometries for the Lorentzian signature and arbitrary spatial curvature k,

Sk(D) =

(
cΛ2

12

){∫
dt
(
Λe(a

3
1b1 + a32b2)− 6k (a1b1 + a2b2)

+ 6

(
a1
b1

(∂ta1)
2 +

a2
b2

(∂ta2)
2

)

+ α b1b2
(a1 − a2)2

(a1b2 + a2b1)2
[
a21(2a2b1 + a1b2) + a22(2a1b2 + a2b1)

]

+α
(b1 − b2)2

(a2b1 + a1b2)2
a21a

2
2(a1b1 + a2b2)

)}
,

(II.33)

where we have factored out the overall constant so that the dynamical term appears only with
a numerical factor, denoted the effective cosmological constant by Λe and introduced the
effective coupling between the two metrics by α:

Λe =
12

c

(
Λ2 − cκ|Φ|2

)
, α = 12|Φ|2κ.

Unlike the bare cut-off parameter Λ, here the effective cosmological constant can vanish or be
negative for a particular model. We shall use the above convention with Λe and α throughout
the rest of the paper.
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The four Euler-Lagrange equations take the following form,

Λe = 6H2
b,i + 6

k

a2i
− α

ai
V (ai, ai′ , bi, bi′), (II.34)

with

V (a1, a2, b1, b2) = a1 +
8a1a2(a

2
1 − a22)b32

(a2b1 + a1b2)3
+

2a2(a
2
2 + 2a1a2 − 5a21)b

2
2

(a2b1 + a1b2)2
,

and

12
∂2t ai
aib2i

+ 6H2
b,i − 3Λe + 6

k

a2i
− 12

(∂tai)(∂tbi)

aib3i
− αW (ai, ai′ , bi, bi′) = 0, (II.35)

with

W (a1, a2, b1, b2) = 3− 2
a2b2(a

2
2 − 4a1a2 + 9a21)

a21(a2b1 + a1b2)
+ 2

a2b
2
2(11a21 − 2a1a2 − 3a22)

a1(a2b1 + a1b2)2

− 8
a2b

3
2(a

2
1 − a22)

(a2b1 + a1b2)3
.

In the above equations we use the convention that (i, i′) = {(1, 2), (2, 1)}, and Hb,j =
∂taj
ajbj

are the generalized Hubble parameters. Before we analyse the inclusion of matter fields
and possible solutions, let us observe that in the flat k = 0 case, inserting Λe from first two
equations in last two, one obtains

6

b1
∂tHb,1 + αa2b2

a2b1 − a1b2
a21

L(a1, a2, b1, b2) = 0,

6

b2
∂tHb,2 + αa1b1

a1b2 − a2b1
a22

L(a1, a2, b1, b2) = 0,

(II.36)

with some rational function L(a1, a2, b1, b2), so in particular, whenever a1b2 = a2b1 both Hb,1

and Hb,2 must be constant.

III. INTERACTION WITH MATTER FIELDS AND RADIATION

The equation of motion derived in the previous section describe the empty universe in
the doubled model. Here, we can ask how they are modified by the presence of the matter
fields. The crucial point is to see how the effective matter and radiation action depend on the
components of the metrics described in terms of fields a1, a2, b1, b2. The main difficulty is
the passage from the microscopic action for spinor and gauge fields to the effective averaged
energy-momentum tensor in the Einstein equations.

The microscopic action for the spinor fields in the doubled universe will be the usual fer-
mionic action ΨDΨ. Since both components of the spinor couple to the respective Dirac
operators D1 and D2 on each of the single sheets separately, and the Ψ field is, by assump-
tion, independent of the metric fields, we conclude that the resulting action will be split into
separate actions that do not mix the metric components on each of the single universes.
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Similar argument can be used for the radiation energy-momentum tensor that originates
from the gauge fields over the considered model. As the model has two U(1) symmetries
there are two gauge fields that couple to the Higgs field. A linear combination of them will
become a massive one, due to spontaneous symmetry breaking of the Higgs field, whereas
another linear combination will correspond to the massless photons. Again, the effective
Yang-Mills action for the photon field will not mix the metric components over the two sheets
and therefore we shall have independent tensor-energy components for each equation.

These heuristic arguments suggest that the effective equations of motion are modified by
the respective components of the overall energy-momentum tensor T 0

0 and T 1
1, which depend

separately on a1, b1 and a2, b2,

6H2
b,i +

6k

a2i
− Λe −

α

ai
V (ai, ai′ , bi, bi′) = −2T 0

0(ai, bi),

12
∂2t ai
aib2i

+ 6H2
b,i − 3Λe +

6k

a2i
− 12

∂tai ∂tbi
aib3i

− αW (ai, ai′ , bi, bi′) = −6T 1
1(ai, bi),

(III.1)

for (i, i′) = {(1, 2), (2, 1)}.
As in the conventional cosmology we consider the model of the perfect fluid, i.e. the

stress-energy tensor is taken to be of the form

T gµν = (ρ+ P )uµuν + Pgµν , (III.2)

where P is refered to as pressure, while ρ is called energy density. For the generalized
Friedmann-Lemaître-Robertson-Walker metric, the vector uµ is

(
1
b(t)
, 0, 0, 0

)
, so that uµuµ =

−1. As a result, T 0
0 = −ρ and T 1

1 = P .
Furthermore, the continuity equation∇µT

µν = 0 reduces to the standard one:

∂ρ

∂t
+ 3(ρ+ P )

∂ta

a
= 0. (III.3)

We assume that the thermodynamics of the matter content is characterized by the following
equation of state:

P (t) = wρ(t). (III.4)

From the continuity equation we immediately infer that then

ρ(t) = η a(t)−3(1+w), (III.5)

where η is the proportionality constant, exactly as in the standard cosmology.
The resulting Einstein equations for the double-sheeted universe are of the following form:

6H2
b,i +

6k

a2i
− Λe −

α

ai
V (ai, ai′ , bi, bi′) =

2η

a
3(1+w)
i

12
∂2t ai
aib2i

+ 6H2
b,i − 3Λe +

6k

a2i
− 12

∂tai ∂tbi
aib3i

− αW (ai, ai′ , bi, bi′) = − 6wη

a
3(1+w)
i

,

(III.6)
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for (i, i′) = {(1, 2), (2, 1)}.
We stress that the above model is a straightforward generalization of the classical one for

the doubled theory, with the only difference that we allow two different scaling factors and
the interaction between them derived from the spectral action. Indeed, for a1 = a2 ≡ a,
b1 = b2 = 1, or α = 0, equations of motion reduces to the usual Friedmann equations
yielding the well-known solutions.

In what follows we shall aim to analyse the possibility of small perturbations of the clas-
sical solutions of Friedmann-Lemaître-Robertson-Walker models, trying to answer the ques-
tion whether the double-sheeted universe is stable. However, before we start the computations
to see when the small perturbations of the classical solution are possible, let us observe that
thanks to the reparametrisation invariance of the time variable in the equations (II.34), (II.35),
we can decide to fix either b1 or b2 or relate them with each other. There are, in principle,
many choices of the possible parametrizations and we choose a particular one, which is mo-
tivated by the existing symmetry with respect to the exchange between left and right modes
in the geometric setup we consider. We shall set b1(t) + b2(t) = 2, therefore, effectively, one
can introduce a new function,

b1(t) = 1 + b(t), b2(t) = 1− b(t),

and derive the equations of motion for a1(t), a2(t) and b(t). Taken an appropriate linear com-
bination of the derivatives of (II.34) and the equations (II.35) we shall obtain three nonlinear
first order differential equations for these functions.

Despite the fact that a full analysis of these equations is complicated and can be done
possibly only numerically, we can obtain some significant results.

We shall finish this section by a remark that one cannot a’priori assume that both lapse
functions are identically 1. Indeed, we shall see that such solutions (in the linearised regime)
are not possible. Moreover, a far more general argument holds also for the full equations
in the case of the empty universe. Then, there are no solutions with b(t) = 0 apart from
a1(t) = a2(t). The argument is quite simple and relies on algebraic manipulation of the
equations (II.34). Indeed, assuming b1(t) = 1 = b2(t) and subtracting the equations we
obtain the following relation between a1 and a2,

2α
a1 − a2

(a1 + a2)2
(
a21 + 4a1a2 + a22

) (
a22 ∂ta1 + a21 ∂ta2

)
= 0,

which is true only if a1 = a2 (since both a1, a2 are positive functions) or 1
a1

+ 1
a2

= const. The
latter condition can be solved, and when used in either of the first two equations (II.34) it leads
to the constant solutions for a1 and a2. Therefore, the functional based on the action (II.33)
has extremal points only if the time scaling factor differs for the two metrics, so b(t) 6= 0. We
leave aside the interpretation of this observation and its potential physical consequences to
see whether the solutions that differ from the standard ones allow physically feasible models.

IV. PERTURBATIVE SOLUTIONS

In what follows we study infinitesimal perturbations of the classical solutions of the Ein-
stein equations in different scenarios like empty universe with a cosmological constant, with
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and without curvature, the matter dominated (i.e. for w = 0) flat universe with a vanishing
cosmological constant Λe = 0 and the radiation dominated (i.e. for w = 1

3
) flat universe.

Our working assumption is that we look for small perturbations around the symmetric,
product, geometry of the form,

a1(t) = a(t) + εr1(t), a2(t) = a(t) + εr2(t), b(t) = εs(t). (IV.1)

and linearise the equations of motion, taking the first terms in ε.
In the zeroth order, we obtain (from all equations, as expected):

6
(ȧ(t))2

a(t)2
− Λe + 6

k

a(t)2
= 2

η

a(t)3+3w
, (IV.2)

whereas the first order yields the following set of linear equations for r1, r2 and s, for the
function a(t), which already satisfies the equation (IV.2):

ṙ1(t) =
3λ2a(t)2(1 + w)− (ȧ(t)2 + k)(1 + 3w)

2a(t)ȧ(t)
r1(t) +

(
ȧ(t) + α

a(t)2

6ȧ(t)

)
s(t),

ṙ2(t) =
3λ2a(t)2(1 + w)− (ȧ(t)2 + k)(1 + 3w)

2a(t)ȧ(t)
r2(t)−

(
ȧ(t) + α

a(t)2

6ȧ(t)

)
s(t),

ṡ(t) =
3

2

ȧ(t)

a(t)

(
r1(t)− r2(t)

a(t)
− 2s(t)

)
,

(IV.3)

where we have introduced Λe = 6λ2 for simplicity, and denote the time derivative by a dot.
Note that for a given background solution a(t) we have a homogeneous equation for the

sum r1(t) + r2(t), which has a simple solution that, however satisfies reasonable initial con-
ditions r1(t0) = r2(t0) = 0 if and only if it is constantly 0. Therefore, we may freely restrict
ourselves to the case r1(t) = r(t) = −r2(t), and final set of perturbative equations,

ṙ(t) =
3λ2a(t)2(1 + w)− (ȧ(t)2 + k)(1 + 3w)

2a(t)ȧ(t)
r(t) +

(
ȧ(t) + α

a(t)2

6ȧ(t)

)
s(t),

ṡ(t) = 3
ȧ(t)

a(t)

(
r(t)

a(t)
− s(t)

)
.

(IV.4)

A. The empty universe

In the case of an empty, or dark-energy dominated universe, we have the simple case of
η = 0 and cosmological solutions depending only on the curvature k and the cosmological
constant Λe.

1. De Sitter universe (k = 0)

The solution of (IV.2) is,

a(t) = a0 exp

(√
Λe

6
t

)
, (IV.5)
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and the equations of motion for r, s are:

ṙ(t) = λr(t) + a(t)s(t)
(
λ+

α

6λ

)
,

ṡ(t) = 3λ
r(t)

a(t)
− 3λs(t).

(IV.6)

Solving this system of linear equations we obtain,

s(t) = C1e
− 3

2
λt+ 1

2

√
21λ2+2αt + C2e

− 3
2
λt− 1

2

√
21λ2+2αt,

r(t) = C3e
− 1

2
λt+ 1

2

√
21λ2+2αt + C4e

− 1
2
λt− 1

2

√
21λ2+2αt,

(IV.7)

where

C3 = C1
a0
6λ

(
3λ+

√
21λ2 + 2α

)
, C4 = C2

a0
6λ

(
3λ−

√
21λ2 + 2α

)
. (IV.8)

Depending on the relative values of the parameters Λe = 6λ2 and α the character of
the solutions changes. For the parameters λ, α, as shown on the graph on Fig. 1, in the
yellow region between the green and red line we have only damping exponentially decreasing
solutions for r(t), while in the grey region below the red line the exponentially vanishing
solution is modified by oscillations. On the red line, however, the above form of solutions
degenerates, and the correct ones are

r(t) = Ce−
1
2
λt, r(t) = Cte−

1
2
λt. (IV.9)

0 5 · 10−2 0.1 0.15 0.2

−1.5

−1

−0.5

0

λ2

α

α = − 21
2 λ

2

α = −10λ2

Figure 1: Plot representing sectors in parameters (λ2, α) with different behaviour of solutions.

On the other hand, we see that the perturbative solutions cannot be extended to −∞ as,
independently of the value of the parameters, they then become much bigger than the de Sitter
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solution. This puts the limits of applicability of the perturbative expansion which is entirely
consistent with the dark-energy dominated universe solutions. As a last remark we note that
even independently of the value of α perturbations, which are decaying exponentially, are
possible for certain values of initial parameters. For example, if at t = 0 we set,

r(0) = a0

(
1−
√

21λ2 + 2α

3λ

)
s(0),

then C1 = C3 = 0 and the perturbations will be exponentially damped for all range of
parameters.

2. Geometries with positive and negative curvatures k = ±1

We start with the easier case of negative curvature, for which the solution of (IV.2) is:

a(t) =
1

λ
sinh (λ(t− t0)) , (IV.10)

and in what follows we choose t0 = 0 to simplify the notation.
It is convenient to change the variables and write the equations (IV.4) in τ = sinh(λt).

Then we obtain,

λṙ(τ) =

(
1 +

ατ 2

6λ2(1 + τ 2)

)
s(τ) +

λτ

1 + τ 2
r(τ),

λṡ(τ) = 3
λ2

τ 2
r(τ)− 3λ

τ
s(τ).

(IV.11)

The above set of equations can be solved explicitly, and the solution for s(τ) is given by,

s(t) = c1 2F1

(
3

4
− ζ, 3

4
+ ζ; 3;−τ 2

)
+ c2G

2,0
2,2

(
−τ 2

∣∣∣∣
1
4
− ζ, 1

4
+ ζ

−2, 0

)
(IV.12)

where 2F1 is the hypergeometric function, G2,0
2,2 is the generalized Meijer’s function [23] and

ζ =

√
21λ2 + 2α

4λ
.

Since the solution is of the Big-Bang cosmology type we shall look for the small t (small
τ ) behaviour of solutions. Both functions are defined in the region τ 2 < 1 and can be extended
analytically to the other values of τ 2, yet τ 2 = 1 is the point at which they are discontinuous
or singular. Additionally the Meijer’s function has a pole at 0 of order at least 2 unless the
parameter ζ is quantized,

ζ =
9

4
+ n, n ∈ N, (IV.13)

when it becomes regular (though non-zero). For above values of the parameter ζ , the first
part of the solution can be rewritten as

c1 (1 + τ 2)
3
2 2F1

(
9

2
+ n,−n; 3;−τ 2

)
,
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and the last component is, in fact, a polynomial of degree n.
The possibility of having both solutions regular at τ = 0 means that there exists a nonzero

perturbation of the standard solution, which has both perturbations vanishing at the initial
time s(0) = r(0) = 0. However, the fact that τ = 1 is a singular point of the Meijer’s function
restricts the possibility of extending the assumed linearised perturbation beyond certain time
frame. The long-time behaviour of the solutions that are arbitrary (not necessarily vanishing)
at t = 0 is similar to the flat case and governed by value of ζ , with asymptotically vanishing
solutions for the same range of parameters α, λ as in the k = 0 situation.

Finally, for the positive curvature, k = 1, the pure dark energy solution is,

a(t) =
1

λ
cosh (λ(t− t0)) , (IV.14)

and the small perturbations at t0 = 0 are, again changing the variable to τ = sinh(λt),

λṙ(τ) =
1√

1 + τ 2

(
τ +

α(1 + τ 2)

6λ2τ

)
s(τ) +

λ

τ
r(τ),

λṡ(τ) =
3√

1 + τ 2
λ2τ

1 + τ 2
r(τ)− 3λτ

1 + τ 2
s(τ).

(IV.15)

which, similarly as in the previous situation, has the solutions that are expressed in terms of
the hypergeometric function 2F1:

s(t) = c1 2F1

(
3

4
− ζ, 3

4
+ ζ;−1

2
;−τ 2

)
+ c2 t

3
2F1

(
9

4
− ζ, 9

4
+ ζ;

5

2
;−τ 2

)
. (IV.16)

From the fact that in this case

r(τ) ∼ −αc1
6λ3

+
c2τ

λ
+O(τ 2),

we deduce that if we require r(0) = 0 then c1 = 0. One can easily check that then also
s(0) = 0, however, both solutions will grow with t. On the other hand, the exponentially
decreasing solution requires c2 = 0.

B. Matter dominated universe

In a completely similar manner we consider the limit in a matter-dominated universe, in
which we put Λe = 0 and w = 0, while η 6= 0. We start with the Einstein-de Sitter universe,
k = 0. In this case the standard solution,

a(t) =

(
3

4
η

) 1
3

t
2
3 ,

gives the following equations for r(t) and s(t),

ṙ(t) = −1

2

ȧ(t)

a(t)
r(t) +

(
α

6

a(t)2

ȧ(t)
+ ȧ(t)

)
s(t),

ṡ(t) = 3
ȧ(t)

a(t)2
r(t)− 3

ȧ(t)

a(t)
s(t).

(IV.17)
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The general solution for s(t) can be expressed in terms of Bessel functions,

s(t) = c1t
− 3

2J√ 19
12

(√
−α

2
t

)
+ c2t

− 3
2Y√ 19

12

(√
−α

2
t

)
, (IV.18)

and the solution for r(t) can be, consequently derived from the second of (IV.17). In case of
negative α the long-time solutions have oscillatory character with the following asymptotic
behaviour of their amplitudes:

s(t) ∼ t−2, r(t) ∼ t−
1
3 ,

so for α < 0 the perturbations decay in t independently of the initial values of the perturbation
at any fixed time. Although the matter-dominated universe describes rather later periods in
the evolution of the universe, still there exists a solution, which is regular at t = 0.

For positive values of α only the second solution, which is exponentially decaying, is an
acceptable one as a perturbation, which signifies that for this range of the parameter only
specific perturbations are stable.

C. Radiation dominated universe

For this situation (again Λe = 0, k = 0) the standard solution of the Einstein equations is,

a(t) =

(
4

3
η

) 1
4

t
1
2 ,

which gives us the following equations for the perturbations:

ṙ(t) = − ȧ(t)

a(t)
r(t) +

(
α

6

a(t)2

ȧ(t)
+ ȧ(t)

)
s(t),

ṡ(t) = 3
ȧ(t)

a(t)2
r(t)− 3

ȧ(t)

a(t)
s(t).

(IV.19)

The solutions for s(t) is,

s(t) = c1t
− 5

4J√ 13
16

(√
−α

2
t

)
+ c2t

− 5
4Y√ 13

16

(√
−α

2
t

)
, (IV.20)

with the exact expression for r(t) that can be obtained directly from the second equation.
Again, in the case of α < 0 the long-time behaviour of the amplitude of oscillations is

s(t) ∼ t−
7
4 , r(t) ∼ t−

1
4 .

However, a very interesting situation occurs near the Big Bang, t = 0, as in the best case
the solution for s(t) diverges and behaves like t

√
13−5
4 , whereas the scale factor r(t) behaves

like t
√
13−3
4 and is regular. The same result will be valid for k = ±1, as the near Big Bang

asymptotics of the radiation dominated universe has the same structure.
The explicit solutions for the k = −1 geometry are in terms of the confluent Heun func-

tions and the long-time dependence of the perturbations will be again similar for α < 0 as is
suggested by a brief numerical analysis of example solutions.

As the solutions for k = 1 are cyclic, the long-term asymptotic of the perturbations does
not make sense in this case.
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V. SUMMARY AND OUTLOOK

The simplest almost-commutative geometry of the two-sheeted universe, which is motiv-
ated by the Connes-Lott idea [11] is an interesting model to study its potential relevance not
only for the particle physics but also for its implication to the large-scale structure of the Uni-
verse. We have shown that an abstract model, with a more general type of metric structure
that is not necessarily a product structure allows a two-metric theory, which is very similar to
the bimetric theory of gravity. Although we are aware that both the interaction structure as
well as the interpretation of the model’s origin are quite different there are striking similarit-
ies in the potential term of the action. It shall be noted that models originating from quantum
deformations of spacetime have a similar feature of two metrics although their origins are
different [24].

Leaving the full model that was developed for the particle interactions [8, 9] aside and
concentrating first on a simplified one, we have focused on a primary question of stability of
classical Friedmann-Lemaître-Robertson-Walker solutions. To be more precise, our idea was
to check whether for some range of parameters a small perturbation in the Dirac operators
making the full one, and hence the metrics different from each other on the two sheets of the
Universe, will diverge or collapse.

Our conclusion is that for the considered range of models, including flat and curved spatial
geometries with dark-energy, radiation or matter dominance there exist a range of paramet-
ers so that the symmetric solution (product geometry) is dynamically stable. Our analysis
confirms but hugely extends the earlier indications [12] by allowing both the scale factors as
well as lapse functions to vary. The stability of the cosmological solutions suggests that the
models with two metrics are admissible from the physical point of view and are an interesting
modification of geometry that may be used in future models.

This has an important bearing on the physical consequences of the model. First of all,
cosmological observables like redshift and observable Hubble constant will be related to the
background standard Friedmann-Lemaître-Robertson-Walker solution. This follows from the
fact that both light and matter will couple (as argued in section III) to both metrics and, taking
into account that in most models the difference between metrics is decreasing as the Universe
evolves, only the average (background) scale factor a(t) will determine the observable red-
shift. However, one can speculate that a possible sign of the fluctuating two metrics might
be seen in physical effects that couple only to one metric (as might be the case of massless
Majorana particles) or couple to metrics in a nonlinear way.

The constructed (simplified) model is predominantly based on the idea that allowed to
explain the appearance of Higgs field and Higgs quartic symmetric-breaking potential from
purely geometric considerations as a form of generalized gauge theory. Transferring this
concept to the theory of metric and generalized general relativity appears to be a natural
an well-motivated physical step. Unlike in the bimetric theory, here the interaction terms
between the two metrics are completely determined by the structure of the theory yet are
not computable in full generality. This prevents us from an analysis of the possibility of
ghost-free sectors in the way it was done for bimetric theories [7, 25] . Nevertheless, since
the model has strong features similar to bimetric gravity (as we have stressed in II G), in
particular, even though the effective interaction potential between the two metric is not a
symmetric polynomial of

√
g−11 g2 but rather a rational function, where the nominator and

denominator are of this form, we expect that a similar result will hold.
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Apart from the fundamental questions of physical consistency and interpretation of the
degrees of freedom of the theory there are still several questions that remain open. First of
all, in case of small deviations from the product geometry it is interesting whether they might
have some observable physical consequences both in the pure gravity sector as well as in the
sector of the matter and radiation. Though this might be considered as pure speculation, such
fluctuations of the metrics, if existing in the radiation era, might be linked to some parity
anisotropies [26] in the Cosmic Microwave Background radiation. Another possible sector
of the theory to explore are solutions with singularities like black holes. All such ideas need
to be explored carefully in future studies.
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Appendix A: SYMBOLS OF THE OPERATOR D−2

Suppose P and Q are two pseudodifferential operators with symbols

σP (x, ξ) =
∑

α

σP,α(x)ξα, σQ(x, ξ) =
∑

β

σQ,β(x)ξβ, (A.1)

respectively, where α, β are multiindices. The composition rule takes the following form [27]

σPQ(x, ξ) =
∑

γ

(−i)|γ|
γ!

∂ξγσP (x, ξ)∂γσQ(x, ξ), (A.2)

where ∂ξa denotes partial derivative with respect to coordinate of the cotangent bundle.
Let us consider the case when P = D−2 and Q = D2. Since D2 has a symbol

σD2(x, ξ) = a2 + a1 + a0, (A.3)

then D−2 has to have a symbol of the form

σD−2(x, ξ) = b0 + b1 + b2 + ..., (A.4)

where bk is homogeneous of order −2− k.
Inserting these expressions into (A.2) and taking homogeneous parts of order 0,−1 and

−2 we get the following set of equations:

b0a2 = 1,

b0a1 + b1a2 − i∂ξa(b0)∂a(a2) = 0,

b2a2 + b1a1 + b0a0 − i∂ξa(b0)∂a(a1)− i∂ξa(b1)∂a(a2)−
1

2
∂ξa∂

ξ
b (b0)∂a∂b(a2) = 0,

(A.5)
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From these relations we get

b0 = a−12 ,

b1 = −
(
b0a1 − i∂ξa(b0)∂a(a2)

)
b0,

b2 = −
(
b1a1 + b0a0 − i∂ξa(b0)∂a(a1)− i∂ξa(b1)∂a(a2)−

1

2
∂ξa∂

ξ
b (b0)∂a∂b(a2)

)
b0.

(A.6)
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2.2.2 Analysis of the interaction term

The action for the doubled geometry model, discussed in the previous sub-

section, contains a potential term that possesses several features of the original

bimetric theory, but its exact analytical form is different than the one present in

bimetric models. However, one can ask if these two approaches coincide in certain

situations. To answer this question we consider the doubled geometry model with

arbitrary metrics, i.e. not necessarily being of the FLRW type. Our first goal is

to examine this model in a situation when both the metrics differ infinitesimally

from the Euclidean ones. In other words, we assume that each of the metrics is of

the form gij = δij + ϵhij. Since we are interested in pure interactions only, we can

assume that the functions h are just constants. We compute the spectral action

for such a choice of geometries and then expand it in the perturbation parameter

up to the fourth order.

The next step is to similarly expand also the action for the bimetric model and

try to match the coefficients by comparing terms of the expansions for these two

models. We conclude that already in the second order in the perturbation parame-

ter these two are different. The doubled geometry model is therefore distinct from

the bimetric gravity, however, it possesses most of its features. On the other hand,

the original bimetric model was constructed without a solid geometric motivation,

and the form of action was rather postulated than derived. Therefore, it seems

reasonable to expect that our model, which shares the main characteristics with

the bimetric model, might be interesting from the cosmological perspective.

We propose a possible physical realization of such geometry. One can think of

two four-dimensional branes living in a higher dimensional space. The interaction

term, which is actually of the Higgs type (cf. the discussion of the Standard Model
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in the previous sections), may be thought of as the one describing a certain type of

interactions between these two parallel universes - the two copies of the spacetime.

Independently of its interpretation, it is crucial to have a compact representa-

tion of the action for the perturbed model s.t. each of its terms is an invariant of

the matrix
√
g−1
2 g1. We find this presentation, which could be used in the future

for further analysis of our model from the point of view of possible cosmological

applications.

Preprint below available online: A. Bochniak and A. Sitarz, Spectral interaction

between universes, arXiv: 2201.03839.

102

https://arxiv.org/abs/2201.03839


ar
X

iv
:2

20
1.

03
83

9v
1 

 [
he

p-
th

] 
 1

1 
Ja

n 
20

22

Spectral interaction between universes

A. Bochniak, A. Sitarz

Institute of Theoretical Physics, Jagiellonian University,
prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland

E-mail: arkadiusz.bochniak@doctoral.uj.edu.pl, andrzej.sitarz@uj.edu.pl

January 12, 2022

Abstract

We derive a perturbative formula for the direct interaction between two four-dimensional
geometries. Based on the spectral action principle we give an explicit potential up to the third
order perturbation around the flat vacua. We present the leading terms of the interaction as
polynomials of the invariants of the two metrics and compare the expansion to the models of
bimetric gravity.

1 Introduction
One of the most significant achievements of modern physics is geometry’s spectacular success
in describing the large-scale structure and the evolution of the Universe thanks to general rela-
tivity. On the subatomic scale, the geometric picture of gauge theories establishes the natural
framework for fundamental particle interactions. Although the common unifying scheme for
both, apparently different, types of interactions is not yet known, there exist various approaches
that aim to bridge the gap. Noncommutative geometry, which changes the way of approach by
making the differential operators as fundamental objects can, at least on the classical level, treat
the gauge fields as well as the metric as different fields that parametrize the real physical object,
the Dirac operator [1, 2, 3].

The theory, when applied to the Standard Model of particle interactions can explain, in a
purely geometric way, the existence of the Higgs field and the appearance of symmetry-breaking
potential. However, the necessary element, that has to be added, includes a geometry of discrete-
type, which is described as a finite-dimensional matrix algebra C ⊕ H ⊕M3(C). In a simplified
model (which ignores the strong interactions and treats the weak interactions as electromagnetic)
one can reduce this algebra to C ⊕ C leading to a simple geometry of a product of the four-
dimensional spin manifold with two points [4, 5].

The model, which looks like a two-sheeted geometry and can be compared to the model with
two four-dimensional branes or the boundary of a thin domain wall of five dimensions in the
bulk (see [6] for vast literature on the latter topic). This extends the image of the universe as
a brane in the bulk with the possibility of the system of a pair of interacting branes. Since the
interactions with the bulk and between the branes influence the physics it is natural to ask what is
the origin of the interactions and whether it is possible to have it of purely geometric origin. The
answer comes again through the tools noncommutative geometry. We assume that the interaction
between the fields on the two sheets is mediated by the Higgs field, which itself is related to the
metric and the connection on the discrete component of the geometry. Following this idea, we
can, in principle, derive an explicit and unambiguous interaction between the geometries alone,
depending only on the metrics.
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In the constructions so far, one usually assumed the natural product-type geometry (product-
type Dirac operators), which, after applying the spectral action procedure [7, 8] led to the standard
Einstein-Hilbert action for the metric, identical on the two universes. Yet this is not the most gen-
eral form of the Dirac operator and different metrics on the two separate universes are admissible
[9]. Together with the Higgs-type field that mediates between the two geometries one can obtain
an interaction term between the two metrics, leading to an interesting class of models, which
appear to be viable from the point of view of cosmological models [10].

The general type of the interaction term for two arbitrary metrics is not explicitly computable
even in the simple setup. An exact answer was obtained only for the Friedmann-Lemaître-
Robertson-Walker (FRLW) type of Euclidean metrics [10] which allowed to study the stability of
solutions of cosmological evolution equations. Interestingly, the obtained models resemble the
so-called bimetric gravity [11], which is a good candidate to potentially solve the puzzle of dark
matter in accordance with the cosmological data [12, 13, 14] and does not suffer from Boulware-
Deser ghost problem [11, 15]. However, the bimetric gravity lacks a geometrical interpretation
and the second metric-like field is not well justified from the standpoint of Riemannian geometry.

As the noncommutative geometry motivated model of two-sheeted space with two metrics
yields a similar theory, with a full diffeomorphism invariance, it is natural to ask how do these
models differ. In particular, in contrast to bimetric theory, the two-sheeted geometry spectral
action principle fixes uniquely (up to multiplicative constant) the interaction term between the
metrics. Our previous analysis of the FLRW type geometries allowed us to give only a partial
answer about the similarities and differences of the two approaches.

In this note, we derive an explicit form of the spectral action for the infinitesimal perturbation
of the flat metric (in the Euclidean setup) on the two-sheeted geometry (up to the fourth-order)
and compare it with the general action proposed for bimetric gravity up to the first three orders.
This demonstrates that a simple model of noncommutative geometry allows direct and generic
interaction between universes (branes) and opens a possibility to study the general properties of
such models.

2 The interaction of geometries - a general construction
Noncommutative geometry allows us to generalize classical concepts from differential geometry
in a systematic way. The fundamental object is a spectral triple, which is a system (A,H,D) con-
sisting of a unital ∗-algebra represented (faithfully) on a Hilbert space H and the Dirac operator
D, which is essentially self-adjoint on H . Several compatibility conditions are assumed, such as
the compactness of the Dirac operator’s resolvent, the boundedness of certain commutators, and
so on. The spectral triple (C∞(M), L2(M, g), D) encoding the geometry of the (compact, spin)
Riemannian manifold (M, g) is the canonical example. Locally, D = iγµ(∂µ+ωµ), where ωµ is
the spin connection on the spinor bundle over (M, g). Another example is almost-commutative
geometry, which is defined as the product of the canonical spectral triple and some finite one,
(AF , HF , DF ), with AF and HF being finite dimensional, and DF being a (matrix) operator
acting on HF . The corresponding Dirac operator has the form D ⊗ 1 + γM ⊗ DF with γM
being the canonical grading on M (that is, at a given point, γM = γ5 in the associated Clifford
algebra). Spectral triples of this product type of geometry were successfully applied to the de-
scription of the Standard Model of particle physics [16] and provided a geometric understanding
of this model.

The natural generalization of the almost-commutative product-like geometry for the Rieman-
nian (four-dimensional) manifoldM and the finite space Z2 is the one with the Dirac operator not
being of the product type. This defines the so-called doubled geometry [9, 10]. More precisely,
for this spectral triple the Dirac operator is taken to be of the form

D =

(
D1 γΦ
γΦ∗ D2

)
, (1)
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where D1 and D2 are the two usual Dirac operators for the two copies of the (spin) Riemannian
manifold M, with metrics g1 and g2, respectively. Here γ is an operator that squares to κ =
±1 and is a generalization of the usual grading on the canonical spectral triple (see [10] for
detailed discussion of the role and origin of this operator). We assume that γ is Hermitian and
anticommutes with all the γa matrices which are taken to be anti-Hermitian and satisfy γaγb +
γbγa = −2δab.

For a given metric g on the manifold M, the Dirac operator can be written explicitely as

D = γadxµ(θa)
∂

∂xµ
+

1

4
γcωcabγ

aγb, (2)

where {θa} is the orthogonal coframe, ds2 = gµνdx
µdxν = θaθa, and the (coefficients of the)

spin connection can be computed by using the relation dθa = ωab ∧ θb.

3 The perturbative interaction of two metric geometries.
We assume that our manifold is a four-dimensional Euclidean torus 1 with the natural choice of
global coordinates and with the metric that is an infinitesimal perturbation of the flat one,

gij = δij + ǫhij , (3)

with some hij and the perturbation parameter ǫ. The inverse metric, gij , is, up to ǫ4:

gij = δij − ǫhij + ǫ2hikh j
k − ǫ3hikhkmhmj + ǫ4hi

jh
jlhlmhmk. (4)

In what follows we will be interested in the form of the potential term, therefore we are allowed
to put hij = const as no derivatives of the metric enter. Therefore, the Dirac operator D, again
up to ǫ4, becomes:

D = γi

(
δji −

1

2
ǫhj

i +
3

8
ǫ2hj

kh
k
i −

5

16
ǫ3hj

kh
k
lh

l
i +

35

128
ǫ4hj

lh
l
kh

k
nh

n
i

)
∂j . (5)

Since we are working with the constant metric we take as the Hilbert space the two copies of
the square-summable sections of the usual spinor bundle over the four-torus with respect to the
flat metric, H = L2(S) ⊗ C2. This facilitates the computations and does not single out any of
the geometries as a preferred one.

For the two-sheeted metric geometry with the Higgs-type field, as described in Sec. 2, the
Dirac-type operator in noncommutative geometry has the form,

D = γj∂j + γF − 1

2
ǫγiHj

i∂j +
3

8
ǫ2γiHjkHki∂j

− 5

16
ǫ3γiHj

kH
k
lH

l
i∂j +

35

128
ǫ4γiHj

kH
k
lH

l
nH

n
i∂j ,

(6)

where

Hjk =

(
h1jk

h2jk

)
, F =

(
Φ

Φ∗

)
, (7)

and we can also assume that the field Φ is constant (since we do not investigate the dynamical
terms). As a result,

D2 =− ∂2
j + κF 2 + ǫHjk∂j∂k −

ǫ

2
γγj[F,Hk

j ]∂k

− ǫ2Hj
lH

lk∂j∂k +
3

8
ǫ2γγj[F,HklHlj ]∂k

+ ǫ3Hj
nH

n
lH

lk∂j∂k −
5

16
ǫ3γγj[F,Hk

lH
l
nH

n
j ]∂k

− ǫ4Hj
mHm

l H
l
nH

nk∂j∂k +
35

128
ǫ4γγj[F,Hk

lH
l
mHm

nH
n
j ]∂k,

(8)

1As all of the obtained terms are local, this assumption is only technical and the results will hold for any compact
manifold.
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where κ = ±1 depending on the properties of the grading γ.
The computation of the interaction term follows the general principle of the spectral action.

Technically, to obtain the Einstein-Hilbert action and its generalization we compute the Wodzicki
residue of the inverse of D2 [17]. The procedure uses the explicit computation of the symbols of
the pseudodifferential operator D−2 and the integration over the cosphere.

The homogeneous parts of the symbol of the differential operator D2 are,

a2 =‖ξ‖2 − ǫHjkξjξk + ǫ2Hj
lH

lkξjξk − ǫ3Hj
nH

n
lH

lkξjξk + ǫ4Hj
mHm

l H
l
nH

nkξjξk,

a1 =− i

2
ǫγγj[F,Hk

j ]ξk +
3i

8
ǫ2γγj[F,HklHlj ]ξk − 5i

16
ǫ3γγj[F,Hk

lH
l
nH

n
j ]ξk

+
35i

128
ǫ4γγj[F,Hk

lH
l
mHm

nH
n
j ]ξk,

a0 =κF 2.

(9)

The symbols of its inverse, σD−2 = b−2 + b−3 + b−4 + . . ., are much more complicated,
with the principal symbol,

b−2 =
1

‖ξ‖2
(
1 + ǫHjk ξjξk

‖ξ‖2 + ǫ2
(
HjkHmn ξjξkξmξn

‖ξ‖4 −Hj
lH

lk ξjξk
‖ξ‖2

)

+ ǫ3
(
HjkHmnHrs ξjξkξmξnξrξs

‖ξ‖6 − 2HjkHm
l H

ln ξjξkξmξn
‖ξ‖4 +Hj

nH
n
lH

lk ξjξk
‖ξ‖2

)

+ǫ4
(
HjkHmnHrsHpq ξjξkξmξnξrξsξpξq

‖ξ‖8 − 3Hj
lH

lkHmnHrs ξjξkξmξnξrξs
‖ξ‖6

+
(
2Hj

nH
n
lH

lkHrs +Hj
lH

lkHr
nH

ns
) ξjξkξrξs

‖ξ‖4 −Hj
mHm

l H
l
nH

nk ξjξk
‖ξ‖2

))
.

(10)

For the b−4 we are, effectively, interested only in its component b′−4 that contains the inter-
action terms between the metrics (there will be terms that are proportional to the volume and the
separate Einstein-Hilbert terms for each metric) that arises (for the constant metrics) exclusively
from the product b−2a1b−2a1b−2 term. To obtain the final expression we already use the prop-
erties of the trace over the algebra of 2 × 2 matrices as well as over the Clifford algebra, which
significantly simplifies the number of terms.

For this part, we obtain,

TrClTr(b
′
−4) = − κ

‖ξ‖6
{
ǫ2 Tr

(
[F,Hm

j ][F,H
nj ]
)
ξmξn

+ǫ3 Tr

(
3[F,Hk

j ][F,H
nj ]Hst ξkξnξsξt

‖ξ‖2 − 3

2
[F,Hk

j ][F,H
n
mHmj]ξnξk

)

+ǫ4 Tr

[(
4[F,Hk

j ][F,H
pj ]HrsHmn + 2[F,Hk j]Hrs[F,Hpj ]Hmn

) ξkξpξrξsξmξn
‖ξ‖4

− 3[F,Hk j][F,Hpj ]Hr
nH

ns ξkξpξrξs
‖ξ‖2

− 9

4

(
[F,Hk

j ][F,H
nmH j

m]Hrs + [F,HnmH j
m][F,Hk

j ]H
rs
) ξkξnξrξs

‖ξ‖2

+
5

4
[F,Hk

j ][F,H
n
mHm

r H
rj]ξkξn +

9

16
[F,HklHlj ][F,H

npHpj ]ξkξn

]}
.

(11)

After integrating the result over the cosphere (the integrals we have used are in the appendix A)
and the manifold, and further using the symmetry of the perturbation terms, the interaction term
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reduces to,

S(h1, h2) ∼ǫ2Tr(h2 − h1)
2

+ǫ3
[
1

4
Tr(h2 − h1)

2Tr(h1 + h2)− Tr
[
(h2 − h1)

2(h1 + h2)
]]

+ǫ4
{

1

24
Tr(h2 − h1)

2
[
(Tr h1)

2 + (Tr h2)
2 + (Trh1)(Tr h2)

−4Tr(h2
1 + h2

2) + 2Tr(h1h2)
]

−1

6
Tr(h2 − h1)

4 +
5

4
Tr
[
(h2 − h1)(h

3
2 − h3

1)
]
− 3

16
Tr(h2

2 − h2
1)

2

+
1

12

[
(Tr h1)Tr[(h2 − h1)

2h1] + (Tr h2)Tr[(h2 − h1)
2h2]

]

− 7

24
Tr(h1 + h2)Tr[(h2 − h1)

2(h2 + h1)]

}
.

(12)

This expression has a much simpler form when replacing the h1, h2 perturbations by their linear
combinations. With

W− = h2 − h1, W+ = h2 + h1,

we have:

S(h1, h2) ∼ ǫ2 Tr(W−)
2

+ǫ3
1

4

(
Tr(W−)

2Tr(W+)− 4Tr(W+W
2
−)
)

+ǫ4
(

1

32
Tr(W 2

−) (TrW+)
2 +

1

96
Tr(W 2

−) (TrW−)
2 − 1

16
Tr(W 2

−)Tr(W
2
+)

− 5

48

(
TrW 2

−
)2

+
7

48
Tr(W 4

−) +
3

4
Tr(W 2

+W
2
−)

+
1

24
Tr(W−)Tr(W

3
−)−

1

4
Tr(W+)Tr(W

2
−W+)

)
.

(13)

4 Comparison with bimetric gravity models
The commonly assumed interaction part between the two metrics g1, g2 in the bimetric gravity
models [11, 12] is of the form

Sint ∼
∫

d4x
√
det g2

(
4∑

n=0

βnen(X)

)
, (14)

where the matrix X =
√
g−1
2 g1, and the constants βn are free parameters of the model. The

invariant functions en are,

e0(X) = 1, e1(X) = Tr(X),

e2(X) =
1

2

(
(Tr(X))2 − Tr(X2)

)
, e4(X) = det(X),

e3(X) =
1

6

(
(Tr(X))

3 − 3Tr(X)Tr(X2) + 2Tr(X3)
)
.

Let us expand the above action in ǫ when g1ij = δij + ǫh1ij and g2ij = δij + ǫh2ij . First, we
compute, √

det g2 = 1 +
1

2
ǫTr(h2) +

1

8
ǫ2
(
(Tr(h2))

2 − 2Tr(h2
2)
)

+
1

48
ǫ3
[
(Tr(h2))

3 − 6Tr(h2)Tr(h
2
2) + 8Tr(h3

2)
]
,

(16)

5

107



and
gij2 g1jk = δik + ǫ (h1 − h2)

i
k + ǫ2

(
h2
2 − h2h1

)i
k
+ ǫ3

(
h2
2h1 − h3

2

)i
k
, (17)

so that

Xi
k =

(√
g−1
2 g1

)i

k

= δik +
1

2
ǫ(h1 − h2)

i
k +

1

8
ǫ2
[
3h2

2 − h2
1 + h1h2 − 3h2h1

]i
k

+
1

16
ǫ3
[
h3
1 + h2h

2
1 − h2

1h2 − h2h1h2 + h1h2h1 + 5h2
2h1 − h1h

2
2 − 5h3

2

]i
k
.

(18)

Finally, we can expand all traces,

Tr(X) = 4 +
1

2
ǫTr(h1 − h2) +

1

8
ǫ2
[
3Tr(h2

2)− Tr(h2
1)− 2Tr(h1h2)

]

+
ǫ3

16

[
Tr(h3

1) + Tr(h2h
2
1) + 3Tr(h2

2h1)− 5Tr(h3
2)
]
= e1(X),

Tr(X2) = 4 + ǫTr(h1 − h2) + ǫ2
[
Tr(h2

2)− Tr(h1h2)
]
+ ǫ3

[
Tr(h2

2h1)− Tr(h3
2)
]
,

Tr(X3) = 4 +
3

2
ǫTr(h1 − h2) +

3

8
ǫ2
[
5Tr(h2

2) + Tr(h2
1)− 6Tr(h1h2)

]

+
1

16
ǫ3
[
−Tr(h3

1)− 35Tr(h3
2)− 9Tr(h2

1h2) + 45Tr(h1h
2
2)
]
,

(19)

and in the end we have the expansion of all invariants ek:

e2(X) = 6 +
3

2
ǫTr(h1 − h2) +

1

8
ǫ2
[
(Tr(h1))

2 + (Tr(h2))
2 − 2Tr(h1)Tr(h2)

+8Tr(h2
2)− 4Tr(h2

1)− 4Tr(h1h2)
]

+
1

16
ǫ3
[
4Tr(h3

1) + 4Tr(h2
2h1)− 12Tr(h3

2) + 4Tr(h2h
2
1)

−Tr(h1)Tr(h
2
1)− 2Tr(h1)Tr(h1h2) + 3Tr(h1)Tr(h

2
2)

+Tr(h2)Tr(h
2
1) + 2Tr(h2)Tr(h1h2)− 3Tr(h2)Tr(h

2
2)
]
,

(20)

e3(X) = 4 +
3

2
ǫTr(h1 − h2) +

1

8
ǫ2
[
−5Tr(h2

1)− 2Tr(h1h2) + 7Tr(h2
2)

+2(Tr(h1))
2 + 2(Tr(h2))

2 − 4Tr(h2)Tr(h1)
]

+
1

48
ǫ3
[
17Tr(h3

1)− 29Tr(h3
2) + 9Tr(h2

1h2) + 3Tr(h1h
2
2)

−9Tr(h1)Tr(h
2
1)− 6Tr(h1)Tr(h1h2) + 15Tr(h1)Tr(h

2
2) + (Tr(h1))

3

+9Tr(h2)Tr(h
2
1) + 6Tr(h2)Tr(h1h2)− 15Tr(h2)Tr(h

2
2)

−3Tr(h2)(Tr(h1))
2 + 3Tr(h1)(Tr(h2))

2 − (Tr(h2))
3
]
.

(21)

For the last ivariant, arising from the determinant, we have,

Det(1 + ǫA+ ǫ2B + ǫ3C) =1 + ǫTr(A) + ǫ2
(
Tr(B) +

1

2

(
(Tr(A))2 − Tr(A2)

))

+ ǫ3
(
Tr(C) + Tr(A)Tr(B)− Tr(AB)

+
1

6
(Tr(A))3 − 1

2
Tr(A2)Tr(A) +

1

3
Tr(A3)

)
,

(22)

leading to,

e4(X) = 1 +
1

2
ǫTr(h1 − h2) +

1

8
ǫ2
(
(Tr(h1 − h2))

2
+ 2Tr

(
h2
2 − h2

1

))

+
1

48
ǫ3
[
8Tr(h3

1 − h3
2) + Tr(h1 − h2)

(
6Tr(h2

2 − h2
1) + (Tr(h1 − h2))

2
)]

.

(23)
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As a result the ǫ2-part of the interaction in the above action is of the form (we omit higher
order corrections here, as the formula gets too complicated and not transparent):

S
(2)
int ∼ (β0 + 4β1 + 6β2 + 4β3 + β4)

+
1

2
ǫ(β1 + 3β2 + 3β3 + β4)Tr(h1)

+
1

2
ǫ(β0 + 3β1 + 3β2 + β3)Tr(h2)

− 1

8
ǫ2 (β3 + 4β2 + 5β1 + 2β0) Tr(h

2
2)

− 1

8
ǫ2 (β1 + 4β2 + 5β3 + 2β4) Tr(h

2
1)

− 1

8
ǫ2 (2β1 + 4β2 + 2β3)Tr(h1h2)

+
1

8
ǫ2 (β2 + 2β3 + β4) (Tr(h1))

2

+
1

8
ǫ2 (β0 + 2β1 + β2) (Tr(h1))

2

+
1

4
ǫ2 (β1 + 2β2 + β3) (Tr(h1)Tr(h1))

+ ǫ3 · · ·

(24)

Comparing the above expression with Sec. 12 we see that there are two quadratic terms in
Sec. 24 that have the same coefficient proportional to β1 +2β2 + β3 but one of them vanishes in
Sec. 12 and the other does not. As a conclusion, even the perturbative form of the spectral action
for the interacting geometries cannot be equivalent to the usually assumed model of action for
bimetric gravity.

Similarly, one can demonstrate that a second natural choice to identify h1 and h2 from the
bimetric perturbative expansion with W− and W+ fields also leads to contradiction already in the
second order of the expansion in ǫ.

5 The interaction in terms of invariants
Even though the usually assumed form of the action for the bimetric gravity is not compatible
with the spectral interactions between geometries one has to observe that the assumed form of the
action is very restrictive as it uses only the coefficients of the invariant polynomial of the matrix
X. This particular choice is quite elegant, yet it restricts a lot the possible interaction terms.

A natural question is, what is the invariant form of the interaction in the perturbative expan-
sion, which is expressed as polynomials in the invariants of the matrix X. As there are only four
independent invariants, we assume that the perturbative action is polynomial of order at most 4
in X:

Sint ∼
∫

d4x
√
det g2

(
α0 + α1Tr

′(X) + α2Tr
′(X2) + α3 (Tr

′(X))
2
+ α4Tr

′(X3)

+α5Tr
′(X)Tr′(X2) + α6 (Tr

′(X))
3
+ α7Tr

′(X4) + α8Tr
′(X)Tr′(X3)

+α9

(
Tr′(X2)

)2
+ α10Tr

′(X2) (Tr′(X))
2
+ α11 (Tr

′(X))
4
)
,

(25)

where for convenience we use Tr′ = Tr − 4. The only term, which we did not expand earlier is
the last one, Tr(X4), and its expansion up to third order in ǫ, is

Tr(X4) = 4 + 2ǫTr(h1 − h2) + ǫ2
(
Tr(h2

1) + 3Tr(h2
2)− 4Tr(h1h2)

)

+ ǫ3
(
−4Tr(h3

2) + 6Tr(h1h
2
2)− 2Tr(h2

1h2)
)
.

(26)
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We expand (25) in ǫ and compare it (up to order ǫ3) with (12). This leads to a linear system of
equations that has a four-parameter family of solutions, with

α1 = −16 + α4, α2 = 10− 3

2
α4,

α3 = −2− α5, α7 = −1− 1

4
α4,

α9 =
1

2
− 1

4
α5 −

3

4
α8, α10 = −1

2
α6,

(27)

and α0 = 0.
It is, in particular, possible to find a unique solution in the form of a polynomial of the lowest

order in X, which is a polynomial of third order, an the resulting action reads,

Sint ∼
∫

d4x
√
det g2

(
−10Tr′(X) + 8Tr′(X2)− 2 (Tr′(X))

2 − 2Tr′(X3) + Tr′(X)Tr′(X2)

)
.

(28)
In other words, in the third order in ǫ we can eliminate all the terms of order higher than three in
X. Passing back to traces the formula is even simpler,

Sint ∼
∫

d4x
√
det g2

(
2Tr(X) + 4Tr(X2)− 2 (Tr(X))2 − 2Tr(X3) + Tr(X)Tr(X2)

)
. (29)

6 Conclusions and outlook
Having derived an explicit perturbative form of the interaction term between geometries using
the spectral methods for a simple two-sheeted non-product geometry we find that although it re-
sembles the bimetric gravity theory the coefficients of the interaction potential cannot be matched
to such a model.

There are, however, many interesting features of our result. First of all, it confirms (per-
turbatively up to the third-order) that the nonlinear interaction term between the geometries is

expressed through a function of the invariants of the matrix X =
√
g−1
2 g1. Although this is

almost obvious, due to the general covariance of the spectral action, no explicit formula for this
function is known. Here, we find its perturbative expansion around flat geometry, which can be
used to study the stability of interacting geometries and cosmology models. This formulation
opens also the possibility for further examination of the ghost problem in our model. At first,
comparing the perturbative form of the action to Fierz-Pauli theory [18] one guesses that there
will be ghosts as the action has only one quadratic term. Yet, the full analysis is more intricate
and we postpone the detailed studies for the future.

Furthermore, the explicit form of perturbative terms is quadratic in the difference of the small
perturbations, which indicates that the flat geometry is indeed stable. Moreover, only one of the
linearized fields will be massive and interact with the massless linear perturbations.

The main result of the paper is that there exists a natural, canonical and geometric interaction
between two adjacent geometries. Independently of the interpretation that relates it to brane
interactions in the bulk, interacting universes, bimetric gravity or noncommutative geometry, the
interaction is fixed in the same way the invariance fixes the usual action terms for gravity (the
cosmological constant and the Einstein-Hilbert scalar curvature term). It is an open intriguing
question of what are the physical consequences of such interactions between geometries and
what effects they have on cosmology.
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A Polynomial integrals over higher spheres
We review here technical tool of the computation, which are the integrals of polynomial functions
over the unit spheres. We are interested in the value of the following quantity,

Iα1β1...αmβm
n,m =

∫

‖x‖=1

dnxxα1xβ1 ...xαmxβm , (30)

i.e. the monomial integrals over a unit sphere. This can be done by the straightforward general-
ization into higher dimensional cases of the method presented in [19] for the 2-sphere (see also
[20],[21]). By denoting

γj =

{
αk, j = 2k − 1

βk, j = 2k
(31)

for k = 1, ...,m, we then have

Iα1β1...αmβm
n,m ≡ Iγ1...γ2m

Sn
=

∫

‖x‖=1

dnxxγ1 ...xγ2m . (32)

Let Sn = ∂Bn ≡ Sn−1 in Rn. The following generalization of [19, Prop. 1], which can be
proven by induction on m, holds:

Proposition A.1. Let Iγ1...γ2m

Bn
=
∫
‖x‖≤1

dnxxγ1 ...xγ2m . Then

Iγ1...γ2m

Bn
=

1

2m+ n
Iγ1...γ2m

Sn
. (33)

Similarly, [19, Prop. 2] can be easily generalized to arbitrary dimensions:

Proposition A.2.

I
γ1...γ2m+2

Sn
=

1

2m+ n

[
δγ1γ2I

γ3...γ2m+2

Sn
+ ...+ δγ1γ2m+2I

γ2...γ2m+1

Sn

]
. (34)

The proof is again based on the induction.
The explicit formulae used in this paper concern three values in the four-dimesional case,

which we present explicitly,

Iγ1...γ2m ≡ Iγ1...γ2m

S4
=

∫

‖x‖=1

d4xxγ1 ...xγ2m . (35)

For m = 0 we have I0 = area(S4) = 2π2. Now, using Prop. A.2, we immediately get

Iγ1γ2 =
1

4
δγ1γ2area(S4) =

π2

2
δγ1γ2 (36)

Iγ1γ2γ3γ4 =
π2

12
[δγ1γ2δγ3γ4 + δγ1γ3δγ2γ4 + δγ1γ4δγ2γ3 ] , (37)

and

Iγ1γ2γ3γ4γ5γ6 =
π2

96
[ δγ1γ2 (δγ3γ4δγ5γ6 + δγ3γ5δγ4γ6 + δγ3γ6δγ4γ5)+

+ δγ1γ3 (δγ2γ4δγ5γ6 + δγ2γ5δγ4γ6 + δγ2γ6δγ4γ5)+

+ δγ1γ4 (δγ2γ3δγ5γ6 + δγ2γ5δγ3γ6 + δγ2γ6δγ3γ5)+

+ δγ1γ5 (δγ2γ3δγ4γ6 + δγ2γ4δγ3γ6 + δγ2γ6δγ3γ4)+

+ δγ1γ6 (δγ2γ3δγ4γ5 + δγ2γ4δγ3γ5 + δγ2γ5δγ3γ4)] .

(38)
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2.2.3 Towards generalized bimetric models

We proceed with the analysis of the doubled geometry models. The intriguing

possibility of referring to them as modified bimetric theories which, in addition to

having all the crucial features of bimetric gravity, are also derivable from purely

geometric setup, is the main motivation for these studies.

In order to continue the discussion of two-sheeted models that are beyond the

FLRW class, we begin with the ones in which the metrics are constant and diago-

nal. Even for this seemingly trivial case, the spectral action cannot be computed

analytically in full glory. Therefore, we concentrate on the model in which both the

metrics are of the form diag(b2, b2, a2, a2). Due to the convenient parametrization

that occurs during the computations, we refer to this model as the Hopf model.

We compute the spectral action for such a model. The potential term can be

parametrized in a way that highlights the presence of the features typical for bimet-

ric models. It is now more complicated than in the case of the FLRW geometries,

e.g. it contains logarithmic terms.

Moreover, the case with generic metrics is also partially discussed. We started

an analysis that may allow for further numerical studies of the doubled geometry

model in the full glory, that is, with arbitrary metrics.

Preprint below available online: A. Bochniak Towards modified bimetric theo-

ries within non-product spectral geometry, arXiv: 2202.03765.
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Towards modified bimetric theories within non-product spectral
geometry

Arkadiusz Bochniak
Institute of Theoretical Physics, Jagiellonian University,
prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland.

We discuss class of doubled geometry models with diagonal metrics. Based on the ana-
lysis of known examples we formulate a hypothesis that supports treating them as modified
bimetric gravity theories. Certain steps towards the generic case are then performed.

I. INTRODUCTION

The description of gravity in terms of geometric objects is the cornerstone of Einstein’s
General Relativity and leads to an intriguing possibility of geometrizing all of the funda-
mental interactions. One of the existing proposal is based on the noncommutative geometry
[1] - a framework that puts on equal footing both the metric structure of manifolds, Yang-
Mills-type theories and also the Higgs mechanism. The spectral description of manifolds [2]
can be generalized into other than classical geometries like discrete spaces and their products
with manifolds. The latter one leads to the definition of the so-called almost-commutative
geometries that were successfully applied to the description of gauge theories [3–5]. Ap-
propriate choice of the finite space allows e.g. for the formulation of the noncommutative
Standard Model of Particle Physics. In this case the finite geometry is build on the matrix
algebra C ⊕ H ⊕M3(C) whose choice is dictated by the gauge group of the model [9].

Yet another model of this type, but much more simpler, is the one studied by Connes
and Lott [10], where the finite algebra is just C ⊕ C and corresponds to the two points. In
this case, the product space can be thought of as M × Z2, that is, we have two copies of
the same manifold. One can further generalize this geometry and can allow for two distinct
metrics on these two sheets [14]. Such a doubled geometry is beyond the usual almost-
commutative framework and therefore is of a non-product type. Since the spectral action
principle applied to a single copy produces the Hilbert-Einstein action, the natural question
of the form of an action functional for this non-product type of geometries arises. The answer
for generic choices of metrics is not known yet, but in the case of the Friedmann-Lemaître-
Robertson-Walker (FRLW) type of Euclidean metrics this was done analitycally [13, 14],
and the stability of certain solutions was also analysed [13]. It was demonstrated therein
that the interaction between the metrics resembles features characteristic to bimetric gravity
models [7, 8]. Despite numerous similarities, certain significant differences are also present.
In particular, the interaction potential for bimetric model is a polynomial one, while for the
two-sheeted model it is a rational function. Further similarities and differences for generic
metrics were recently analysed in [19], where yet another interpretation of this model in terms
of interacting branes was proposed.

In this note we discuss yet another class of models beyond the FLRW framework. We il-
lustrate the generally claimed features on the simplified example - the so-called Hopf model.
In this case the interaction potential has nontrivial logarithmic terms but it still possesses bi-
metric gravity characteristics. Finally, we make a general comment on the doubled geometry
models which may allow for its future numerical studies.
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II. THE GENERIC DIAGONAL MODEL

A framework of spectral geometry, allowing for an equivalent description of geomet-
ric objects in terms of algebraic data, originates from the observation that the geometry
of a compact spin Riemannian manifold M can be encoded in the collection of data
(C∞(M), L2(M), DM) [2], where L2(M) is the Hilbert space of square-integrable spinors,
and DM is the Dirac operator, which can be written locally (with the use of the spin connec-
tion ω) as iγµ(∂µ + ωµ).

This system of data is a prerequisite for the notion of a spectral triple, a set (A,H,D)
consisting of a unital ∗-algebra A represented in a faithful way on a Hilbert space H , on
which the (possibly unbounded) densely defined self-adjoint operator D acts. In the generic
case it is assumed that the commutators [D, a], a ∈ A, are well-defined and can be (uniquely)
extended to an element from B(H), bounded operators on H . Furthermore, the resolvent
of D has to be compact. Several further comptability conditions are imposed for certain
applications [6, 9].

In addition to the aforementioned canonical spectral triple associated to a manifold M ,
the finite dimensional ones are well-understood [11, 12]. In this case both an algebra AF

and a Hilbert space HF are finite dimensional, and DF is just a matrix. One can go one step
further and consider products of spectral triples considered so far. The almost-commutative
geometry is a result of such a construction, where the first spectral triple in the product is the
canonical one for a manifold M , and the other one is finite. In the case with dimM = 4, the
Dirac operator for the resulting triple is (pointwisely) DM ⊗ 1 + γ5 ⊗ DF , where γ5 is the
usual grading in the Clifford algebra associated to the manifold M .

However, even for the product space with finite part being just the two points set, this is
not the most general Dirac operator one can consider. Indeed, the operator

D =

(
D1 γΦ
γΦ∗ D2

)
(II.1)

with a field Φ, which for our purposes is taken to be a constant, is an example of another
candidate [14]. HereD1, D2 are two Dirac operators forM , but considered with two different
Riemannian metrics g1, g2. The operator γ is a straightforward generalization of γ5: γ∗ = γ,
{γ, γa} = 0 for all anti-Hermitian γa generating the Clifford algebra, {γa, γb} = −2δab1, but
now γ2 = κ = ±1 (instead of requiring κ = 1). These models are refered to as the doubled
geometries [13].

We consider geometries of this type with the metric on each sheet chosen to be of the form

ds2 =

3∑

j=0

a2j
(
dxj
)2
, (II.2)

where aj , for j = 0, 1, 2, 3, are constants. The spin connection ω is identically zero since for
the coframe {θa} we have dθa = 0 for every a = 0, . . . , 3, and the resulting Dirac operator

therefore reads, D =
3∑

j=0

1
aj
γj∂j . The corresponding doubled geometry constructed out of

these two sheets is therefore described by a Dirac operator of the form

D =

3∑

j=0

Ajγ
j∂j + γF, (II.3)
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where

Aj =

(
1

a1,j
1

a2,j

)
, F =

(
Φ

Φ∗

)
. (II.4)

The associated Laplace operator is hence given by

D2 = −
3∑

j=0

A2
j∂

2
j +

3∑

j=0

[F,Aj]γγ
j∂j + κF 2, (II.5)

and one can then easily read the decomposition of its symbol into the homogeneous parts,
σD2 = a0 + a1 + a2.

Since our first goal is to determine the leading terms of the spectral action,

S(D) = Λ4Wres(D−4) + cΛ2Wres(D−2)

=

∫

M

∫

‖ξ‖=1

(
Λ4TrTrCl b

2
0 + cΛ2TrTrClb2

)
,

(II.6)

we have to find the symbol of the inverse of the Laplace operator, σD−2 = b0 + b1 + b2 + ...,
what can be achieved by using the standard methods of pseudodifferential calculus [15]. (In
the above equation TrCl denotes the trace performed over the Clifford algebra and Tr is the
usual matrix trace over two-by-two matrices.)

In our case we get

b0 =

(
3∑

j=0

A2
jξ

2
j

)−1

, b2 = b0a1b0a1b0 − b0a0b0, (II.7)

so that

TrCl(b2) = −4κb0

(
3∑

j=0

[F,Aj ]b0[F,Aj ]ξ
2
j + F 2

)
b0. (II.8)

The only nonzero elements of the matrix b0 are on its diagonal and they are equal to

(b0)
i
i =

1
3∑

j=0

A2
i,jξ

2
j

, (II.9)

where Ai,j ≡ (Aj)
i
i =

1
ai,j

, and as a result of a straightforward computation we get

Tr

(
−4κb0

3∑

j=0

[F,Aj]b0[F,Aj]b0ξ
2
j

)

= 4κ|Φ|2
3∑

j,k=0

(A2,j −A1,j)
2(A2

1,k + A2
2,k)(

3∑
l=0

A2
1,lξ

2
l

)2( 3∑
l=0

A2
2,lξ

2
l

)2 ξ
2
j ξ

2
k.

(II.10)
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The resulting spectral action is therefore of the form

S(D) ∼
∫

M

(
Λ2

eSΛe + αV̂ (g1, g2)
)
, (II.11)

with

SΛe =

∫

‖ξ‖=1





(
3∑

j=0

A2
1,jξ

2
j

)−2

+

(
3∑

j=0

A2
2,jξ

2
j

)−2


 (II.12)

and

V̂ (g1, g2) =
3∑

j,k=0

(A2,j −A1,j)
2(A2

1,k + A2
2,k)

∫

‖ξ‖=1

ξ2j ξ
2
k(

3∑
l=0

A2
1,lξ

2
l

)2( 3∑
l=0

A2
2,lξ

2
l

)2 (II.13)

where we have already introduced effective parametrization,

Λ2
e =

12

c
(Λ2 − cκ|Φ|2), α = 12|Φ|2κ, (II.14)

and ommited the irrelevant global multiplicative constant. Therefore, the problem of finding
the potential term describing the interaction between the two diagonal metrics reduces to
compute linear combination of the integrals of the form

∫

‖ξ‖=1

ξ2j ξ
2
k(

3∑
l=0

A2
1,lξ

2
l

)2( 3∑
l=0

A2
2,lξ

2
l

)2 . (II.15)

Moreover, from the Eqn. (II.13) it immediately follows that V̂ (g1, g2) = V̂ (g2, g1), that is,
V̂ is symmetric under the interchange g1 ↔ g2. We further conjecture that the potential term
can be written as

V̂ (g1, g2) = 2π2V
(√

g−1
2 g1

)√
det g2 (II.16)

for some function V. By the symmetry of V̂ , to prove this claim it is enough to show that
the function V′(g1, g2) := V̂ (g1,g2)

2π2
√
det g2

depends only on the eigenvalues of
√
g−1
2 g1. We il-

lustrate this hypothesis on a simple nontrivial example - the Hopf model - discussed in the
forthcoming section.

III. THE HOPF MODEL

We consider here models with diagonal metrics given by g00 = g11 = b2 and g22 = g33 =
a2, for which then have

(b0)
1
1 =

a21b
2
1

a21(ξ
2
0 + ξ21) + b1(ξ22 + ξ23)

, (b0)
2
2 =

a22b
2
2

a22(ξ
2
0 + ξ21) + b2(ξ22 + ξ23)

(III.1)
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and

V̂ (g1, g2) =
(b1 − b2)

2

b21b
2
1

∫

‖ξ‖=1

(ξ20 + ξ21) det(b0)Tr(b0)

+
(a1 − a2)

2

a21a
2
1

∫

‖ξ‖=1

(ξ22 + ξ23) det(b0)Tr(b0).

(III.2)

In order to parametrize the three-sphere ‖ξ‖ = 1 we use here the following Hopf-like
coordinates which resemble the symmetry of the system:

ξ0 = cos θ cosϕ, ξ1 = cos θ sinϕ, ξ2 = sin θ cosψ, ξ3 = sin θ sinψ. (III.3)

The angle θ is taken from
[
0, π

2

]
, while 0 ≤ ψ ≤ 2π, and the surface element in these

coordinates is then given by dS = cos θ sin θdθdϕdψ.
As a result, we get

det(b0)Tr(b0)

=
a21a

2
2b

2
1b

2
2

[
a21b

2
1(a

2
2 cos

2 θ + b22 sin
2 θ) + a22b

2
2(a

2
1 cos

2 θ + b21 sin
2 θ)
]

[
a21 cos

2 ϕ(a21 cos
2 θ + b21 sin

2 θ) sin2 ϕ
]2 [

a22 cos
2 ϕ(a22 cos

2 θ + b22 sin
2 θ) sin2 ϕ

]2 .
(III.4)

Let us introduce the following notation

Iµ,c =

∫

‖ξ‖=1

ξ2µ cos
2 θ dS

[
a21 cos

2 ϕ(a21 cos
2 θ + b21 sin

2 θ) sin2 ϕ
]2 [

a22 cos
2 ϕ(a22 cos

2 θ + b22 sin
2 θ) sin2 ϕ

]2 ,

(III.5)
and

Iµ,s =

∫

‖ξ‖=1

ξ2µ sin
2 θ dS

[
a21 cos

2 ϕ(a21 cos
2 θ + b21 sin

2 θ) sin2 ϕ
]2 [

a22 cos
2 ϕ(a22 cos

2 θ + b22 sin
2 θ) sin2 ϕ

]2 ,

(III.6)
and notice that

I0,c = I1,c = I2,c = I3,c, I0,s = I1,s, I2,s = I3,s, (III.7)

so that

V̂ (g1, g2) = 2a21a
2
2b

2
1b

2
2

{
a21a

2
2(b

2
1 + b22)

[
(b1 − b2)

2

b21b
2
2

I0,c +
(a1 − a2)

2

a21a
2
2

I0,s

]

+b21b
2
2(a

2
1 + a22)

[
(b1 − b2)

2

b21b
2
2

I0,s +
(a1 − a2)

2

a21a
2
2

I2,s

]}
.

(III.8)

In order to find the final form of the potential it remains to compute the integrals I0,c, I0,s
and I2,s. The result reads,

V̂ (g1, g2) =
2π2

(a2b1 − a1b2)(a2b1 + a1b2)2
(F (a1, a2, b1, b2) +G(a1, a2, b1, b2)) , (III.9)

where

F (a1, a2, b1, b2) = 4a21a
2
2b

2
1b

2
2(a1 − a2)(b1 − b2) log

(
a1b2
a2b1

)
, (III.10)
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and

G(a1, a2, b1, b2) = (a22b
2
1 − a21b

2
2)
[
a21b

2
1a2(b1 − 2b2) +a

2
2b

2
2a1(b2 − 2b1)

+ a31b
2
1b2 + a32b

2
2b1
]
.

(III.11)

We observe that for a1 = a2 the potential reduces to V̂ (g1, g2) = 2π2a21(b1 − b2)
2, while

for b1 = b2 we have V̂ (g1, g2) = 2π2(a1 − a2)
2b21.

Since the logarithm vanishes if and only if a1
a2

= b1
b2

it would be, in principle, interesting
to consider the limit of V̂ (g1, g2) when b1 tends to b2

a1
a2

. The value of the function V is
indeterminated in this case, but the limit may still exists. Indeed, as a result we get

lim
b1→b2

a1
a2

V̂ (g1, g2) =
b22
a22

(a1 − a2)
2(a21 + a22). (III.12)

Introducing the new variable x = b1
b2

and y = a1
a2

we can write

V̂ (g1, g2) = 2π2V
(√

g−1
2 g1

)√
det g2, (III.13)

where

V
(√

g−1
2 g1

)
=

4x2y2(x− 1)(y − 1)

(x− y)(x+ y)2
log
(y
x

)
+ x2y2 + 1− 2xy

xy + 1

x+ y
. (III.14)

We observe that

V
(√

g−1
2 g1

)√
det g2 = V

(√
g−1
1 g2

)√
det g1, (III.15)

what illustrates the hypothesis.

IV. COMMENT ON GENERIC METRICS

The so far examined examples of doubled geometries suggest that these models can be
thought of as certain modifications of bimetric theories as the potential term possesses fea-
tures characteristic to this type of modified gravity theories. Despite the fact that series of
non-trivial examples are already analysed, the derivation of the action in the generic case is
still an open problem. In the approach we are using the main chalenge is related with the
computation of certain integrals of rational functions defined over higher spheres:

I =

∫

‖ξ‖=1

d4ξ

Aµνξµξν
, (IV.1)

with smooth Aµν , which can be further written as Aµν = Ω(δµν + ǫµν) with Ω ∈ R and ǫµν
being symmetric and traceless. In the formula above ξα is the αth coordinate of vector ξ.
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We make here some comments on the analysis of doubled geometry models in case when
the tensors Aµν does not differ sufficiently from the diagonal ones. This is not identical to the
situation where the metrics are small perturbation of the Euclidean ones - for the discussion
of the latter we refer to [19].

Assuming that max
µ,ν

‖ǫµν‖∞ is sufficiently small we can expand in these parameters and

write
I =

1

Ω

∑

m≥0

(−2)mǫα1β1 . . . ǫαmβmI
α1β1...αmβm

4,m , (IV.2)

where
Iα1β1...αmβm
n,m =

∫

Sn−1

dnξξα1ξβ1 . . . ξαmξβm (IV.3)

are polynomial integrals over higher spheres which can be evaluated generalizing the methods
from [18] - see also [19] for further discussion.

Denoting

γj =

{
αk, j = 2k − 1,

βk, j = 2k
(IV.4)

we define Iγ1...γ2m = Iα1β1...αmβm

4,m , and let ∆γ1...γ2m be the sum of product of deltas in Iγ1...γ2m ,
i.e.

Iγ1...γ2m = cm∆
γ1...γ2m (IV.5)

with some real number cm, and ∆... =
∑
δ.....δ.. Since ǫ is traceless not all terms in

ǫγ1γ2 ...ǫγ2m−1γ2mI
γ1...γ2m (IV.6)

are nonzero. Let N2m be the number of nonzero terms, and consider the following problem.
Suppose the numbers 1, ..., 2m are given, and we would like to use them to fill in an 1 × 2m
array T , with a given subdivision into 1× 2 subarrays T = T1|T2|...|Tm, as follows:

• In the first entry of T1 we put 1,

• For every j = 1, ..., m, we have Tj =
[
aj |bj

]
with aj < bj ,

• For every j = 1, ..., m, aj < aj+1.

Then N2m is a number of such fillings for which there is no j such that Tj is of the form[
2l − 1|2l

]
, for some l = 1, ..., m.

Since, by symmetry of ǫ, any nonzero term in ǫγ1γ2 ...ǫγ2m−1γ2mI
γ1...γ2m produces tr(ǫm),

we have
ǫγ1γ2 ...ǫγ2m−1γ2mI

γ1...γ2m = N2mcmtr(ǫ
m), (IV.7)

and the problem reduces to finding coefficients cm. Since area(S3) = 2π2 we get c1 = π2

2
.

Moreover, by using the generalization of [18, Prop. 2] (see also [19, Prop. A.2] ) one can
easily find the recursive formula for cm:

cm =
cm−1

4 + 2(m− 1)
, (IV.8)
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and its solution reads

cm =
4π2

(2m+ 2)!!
. (IV.9)

As a result,

I =
1

Ω

[
2π2 +

2π2

3
tr(ǫ2) + 4π2

∑

m≥3

(−2)m

(2m+ 2)!!
N2mtr(ǫ

m)

]
. (IV.10)

In order to apply this result to a specific term of the action one has to first solve the combinat-
orial problem of finding the coefficients N2m, up to required order in m. We postpone for the
future research the problem of determining set of metrics for which the rate of convergence
of the above series is satisfactory for all the terms that appear in the action functional.

V. CONCLUSIONS AND OUTLOOK

The discussed doubled geometry model is an interesting possibility of going beyond the
General Relativity. The explicit functional form of its action is derivable in the same way
as the Hilbert-Einstein’s one but with the use of a different geometry instead of the classical
manifold. Here we extended the existing family of known examples for which the features
characteristic to bimetric gravity models are present. We also made further steps towards the
analysis of models that are beyond the class of such whose action is analytically computable.
We remark that yet another approach based on a different type of noncommutativity can
produce bimetric type of models [20]. It will be interesting to find some deeper relations
between these two formulations - we postpone this for a future research.
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2.2.4 Outlook

The non-product geometry seems to be an intriguing possibility to go beyond

the General Relativity within the noncommutative geometry framework. Consid-

ering a mild modification of the two-point Connes-Lott model we end up with a

model that possesses the main features of the bimetric gravity. After performing

partial analysis of the derived effective Lagrangian, we have demonstrated that this

type of theory may be of physical interest and require further studies.

The analysis of the action under the assumption that both metrics differ in-

finitesimally from the Euclidean ones is the first step in analysing the possibility

for the presence of certain types of ghosts in the doubled-geometry models. The

preliminary results suggest that they could be found in these models, but since this

problem is in general more subtle, further investigations are required. In particular,

one may try to mimic certain arguments from e.g. [136, 145], where the issue of

Boulware-Deser ghosts for bimetric gravity was discussed.

One can also further investigate the interpretation of the two parallel universes

interacting in a nontrivial way. This also naturally suggests further generalization:

models with finite (larger than two) copies of the same spacetime (or even different

ones) with analogous Higgs-like interactions between every pair of sheets. One may

speculate that this multi-sheeted universe could lead to interesting cosmological

implications.

We have shown that certain non-product geometries can lead to intriguing

cosmological models. The natural question that arises is what kind of non-product

geometries can be used to derive other types of modified gravity theories. We hope

that this path of research will be explored in the nearest future.
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3 Conclusions and outlook

The paradigm of almost-commutative geometry was for years crucial for the

geometrization of physics. We have demonstrated that by going beyond this frame-

work one can find a geometric description for both the Standard Model of particle

physics and also for cosmological theories that go beyond the General Relativity.

The formulation of the Standard Model as a non-product geometry allows

for taking into account its Lorentzian structure and does not produce certain

issues known from other descriptions. Several intriguing interplays between the

Lorentzian symmetry, the chirality of the Dirac operator, the fermion doubling

problem and the appearance of twisted structures requires further investigations.

All of these aspects are present also in most of the existing attempts to solve the

old fermion doubling problem. One can speculate that finding the precise, math-

ematically rigorous relation between the previous approaches and the one based

on non-product geometry, may help with the understanding of the aforementioned

interplays.

On the other hand, the application of non-product geometries for the descrip-

tion of modified gravity models gives an opportunity to study them from a geomet-

ric perspective. As an example, we have shown that simply modification of the two

points Connes-Lott model results in the doubled geometry model that shares most

of the features with bimetric gravity theories. Further analysis of these models are

required and we expect that they may shed a new light on certain modified gravity

theories.
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